Wnt ligands are lipid-modified, secreted glycoproteins that control multiple steps during embryogenesis and adult-tissue homeostasis. Little is known about the mechanisms underlying Wnt secretion. Recently, Wntless (Wls/Evi/Srt) was identified as a conserved multi-pass transmembrane protein whose function seems to be dedicated to promoting the release of Wnts. Here, we describe Wls accumulation in the Golgi apparatus of Wnt/Wingless (Wg)-producing cells in Drosophila, and show that this localization is essential for Wg secretion. Moreover, Wls localization and levels critically depend on retromer, a conserved protein complex that mediates endosome-to-Golgi protein trafficking in yeast. In the absence of the retromer components Dvps35 or Dvps26, but in presence of Wg, Wls is degraded and Wg secretion impaired. Our results indicate that Wg, clathrin-mediated endocytosis and retromer sustain a Wls traffic loop from the Golgi to the plasma membrane and back to the Golgi, thereby enabling Wls to direct Wnt secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.