Biomass represents an abundant carbon-neutral renewable resource for the production of bioenergy and biomaterials, and its enhanced use would address several societal needs. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally referred to as the biorefinery. The integration of agroenergy crops and biorefinery manufacturing technologies offers the potential for the development of sustainable biopower and biomaterials that will lead to a new manufacturing paradigm.
Even late transition metal complexes function as active and selective catalysts for α-olefin polymerization. The discovery of a highly active family of catalysts 1 based on iron, a metal that had no previous track record in this field, has highlighted the possibilities for further new catalyst discoveries. As a result, an intense search has developed for new-generation catalysts, in both academic and industrial research laboratories. R =H, Me; R =Me, iPr; R =H, Me, iPr; R =H, Me; X=halide.
The synthesis, characterization, and ethylene polymerization behavior of a series of iron and cobalt halide complexes, LMX n (M ) Fe, X ) Cl, n ) 2, 3, X ) Br, n ) 2; M ) Co, X ) Cl, n ) 2), bearing chelating 2,6-bis(imino)pyridyl ligands L [L ) 2,6-(ArNCR 1 ) 2 C 5 H 3 N] is reported. X-ray diffraction studies show the geometry at the metal centers to be either distorted square pyramidal or distorted trigonal bipyramidal. Treatment of the complexes LMX n with methylaluminoxane (MAO) leads to highly active ethylene polymerization catalysts converting ethylene to highly linear polyethylene (PE). LFeX 2 precatalysts with ketimine ligands (R 1 ) Me) are approximately an order of magnitude more active than precatalysts with aldimine ligands (R 1 ) H). Catalyst productivities in the range 3750-20600 g/mmol‚h‚bar are observed for Fe-based ketimine catalysts, while Co ketimine systems display activities of 450-1740 g/mmol‚h‚bar. Molecular weights (M w ) of the polymers produced are in the range 14000-611000. Changing reaction conditions also affects productivity and molecular weight; in some systems, a bimodal molecular weight distribution is observed. On the basis of evidence gathered to date, the lower molecular weight fraction is a result of chain transfer to aluminum while the higher molecular weight fraction is produced by a combination of mainly -H transfer and some chain transfer to aluminum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.