In situ collagen gelation is a method that combines a static three-dimensional culture technique with rotating bioreactors. This method was designed for large dense tissue engineering ex vivo. To challenge the current limitations on size, we combined the static collagen gel embedding method with high-aspect ratio rotating bioreactors. Rat calvarial cells in gelated collagens were cultured in rotating vessels with 5 mM beta-glycerophosphate-containing medium for 1, 2, or 3 wk and then analyzed for cell morphology, cell distribution, and viability, as well as for contraction of the collagen gel. The size of collagen gels with rat calvarial cells averaged 2.8 cm in diameter x 0.25 cm in thickness at the end of 3 wk. Scanning electron microscopy and laser scanning confocal microscopy of collagen gels revealed a homogeneous distribution of living cells. Despite the barrier effects from induced calcification, in collagen gels, cell metabolic activity (alkaline phosphatase assay and 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide assay) increased over the 3 wk, and cell viability (trypan blue exclusion and flow cytometry analysis) remained at about 90% at the end of 3 wk. Based on our results, we determined that in situ collagen gelation provides a feasible method for engineering large dense tissue ex vivo.
Bone is a complex, highly structured, mechanically active, three-dimensional (3-D) tissue composed of cellular and matrix elements. We previously published a report on in situ collagen gelation using a rotary 3-D culture system (CG-RC system) for the construction of large tissue specimens. The objective of the current study was to evaluate the feasibility of bone tissue engineering using our CG-RC system. Osteoblasts from the calvaria of newborn Wistar rats were cultured in the CG-RC system for up to 3 wk. The engineered 3-D tissues were implanted into the backs of nude mice and calvarial round bone defects in Wistar rats. Cell metabolic activity, mineralization, and bone-related proteins were measured in vitro in the engineered 3-D tissues. Also, the in vivo histological features of the transplanted, engineered 3-D tissues were evaluated in the animal models. We found that metabolic activity increased in the engineered 3-D tissues during cultivation, and that sufficient mineralization occurred during the 3 wk in the CG-RC system in vitro. One mo posttransplantation, the transplants to nude mice remained mineralized and were well invaded by host vasculature. Of particular interest, 2 mo posttransplantation, the transplants into the calvarial bone defects of rats were replaced by new mature bone. Thus, this study shows that large 3-D osseous tissue could be produced in vitro and that the engineered 3-D tissue had in vivo osteoinductive potential when transplanted into ectopic locations and into bone defects. Therefore, this system should be a useful model for bone tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.