We present an empirical flexible and polarizable water model which gives an improved description of the position, momentum, and dynamical (spectroscopic) distributions of H nuclei in water. We use path integral molecular dynamics techniques in order to obtain momentum and position distributions and an approximate solution to the Schrodinger equation to obtain the infrared (IR) spectrum. We show that when the calculated distributions are compared to experiment the existing empirical models tend to overestimate the stiffness of the H nuclei involved in H bonds. Also, these models vastly underestimate the enormous increase in the integrated IR intensity observed in the bulk over the gas-phase value. We demonstrate that the over-rigidity of the OH stretch and the underestimation of intensity are connected to the failure of existing models to reproduce the correct monomer polarizability surface. A new model, TTM4-F, is parametrized against electronic structure results in order to better reproduce the polarizability surface. It is found that TTM4-F gives a superior description of the observed spectroscopy, showing both the correct redshift and a much improved intensity. TTM4-F also has a somewhat improved dielectric constant and OH distribution function. It also gives an improved match to the experimental momentum distribution, although some discrepancies remain.
The local point symmetry of the short-range order in simple monatomic liquids remains a fundamental open question in condensed-matter science. For more than 40 years it has been conjectured that liquids with centrosymmetric interactions may be composed of icosahedral building blocks. But these proposed mobile, randomly orientated structures have remained experimentally inaccessible owing to the unavoidable averaging involved in scattering experiments, which can therefore determine only the isotropic radial distribution function. Here we overcome this limitation by capturing liquid fragments at a solid-liquid interface, and observing the scattering of totally internally reflected (evanescent) X-rays, which are sensitive only to the liquid structure at the interface. Using this method, we observe five-fold local symmetry in liquid lead adjacent to a silicon wall, and obtain an experimental portrait of the icosahedral fragments that are predicted to occur in all close-packed monatomic liquids. By shedding new light on local bond order in disordered structures such as liquids and glasses, these results should lead to a better microscopic understanding of melting, freezing and supercooling.
Russian physicist Viktor Lakhno from Keldysh Institute of Applied Mathematics, RAS considers symmetrical bipolarons as a basis of high-temperature superconductivity.
Neutron Compton scattering measurements presented here of the momentum distribution of hydrogen in KH2PO4 just above and well below the ferroelectric transition temperature are sufficiently sensitive to show clearly that the proton is coherent over both sites in the high temperature phase, a result that invalidates the commonly accepted order-disorder picture of the transition. The Born-Oppenheimer potential for the hydrogen, extracted directly from data for the first time, is consistent with neutron dif-fraction data, and the vibrational spectrum is in substantial agreement with infrared absorption measurements. The measurements are sensitive enough to detect the effect of surrounding ligands on the hydrogen bond, and can be used to study the systematic effect of the variation of these ligands in other hydrogen bonded systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.