In the modern world, the systems getting smarter leads to a rapid increase in the usage of electricity, thereby increasing the load on the grids. The utilities are forced to meet the demand and are under stress during the peak hours due to the shortfall in power generation. The abovesaid deficit signifies the explicit need for a strategy that reduces the peak demand by rescheduling the load pattern, as well as reduces the stress on grids. Demand-side management (DSM) uses several algorithms for proper reallocation of loads, collectively known as demand response (DR). DR strategies effectively culminate in monetary benefits for customers and the utilities using dynamic pricing (DP) and incentive-based procedures. This study attempts to analyze the DP schemes of DR such as time-of-use (TOU) and real-time pricing (RTP) for different load scenarios in a smart grid (SG). Centralized and distributed algorithms are used to analyze the price-based DR problem using RTP. A techno-economic analysis was performed by using particle swarm optimization (PSO) and the strawberry (SBY) optimization algorithms used in handling the DP strategies with 109, 1992, and 7807 controllable industrial, commercial, and residential loads. A better optimization algorithm to go along with the pricing scheme to reduce the peak-to-average ratio (PAR) was identified. The results demonstrate that centralized RTP using the SBY optimization algorithm helped to achieve 14.80%, 21.7%, and 21.84% in cost reduction and outperformed the PSO.
In this paper, the optimal dynamic scheduling of electric vehicles (EVs) in a parking lot (PL) is proposed to minimize the charging cost. In static scheduling, the PL operator can make the optimal scheduling if the demand, arrival, and departure time of EVs are known well in advance. If not, a static charging scheme is not feasible. Therefore, dynamic charging is preferred. A dynamic scheduling scheme means the EVs may come and go at any time, i.e., EVs’ arrival is dynamic in nature. The EVs may come to the PL with prior appointments or not. Therefore, a PL operator requires a mechanism to charge the EVs that arrive with or without reservation, and the demand for EVs is unknown to the PL operator. In general, the PL uses the first-in-first serve (FIFS) method for charging the EVs. The well-known optimization techniques such as particle swarm optimization and shuffled frog leaping algorithms are used for the EVs’ dynamic scheduling scheme to minimize the grid’s charging cost. Moreover, a microgrid is also considered to reduce the charging cost further. The results obtained show the effectiveness of the proposed solution methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.