E-cadherin controls a wide array of cellular behaviors including cell-cell adhesion, differentiation and tissue development. Here we show that presenilin-1 (PS1), a protein involved in Alzheimer's disease, controls a gamma-secretase-like cleavage of E-cadherin. This cleavage is stimulated by apoptosis or calcium influx and occurs between human E-cadherin residues Leu731 and Arg732 at the membrane-cytoplasm interface. The PS1/gamma-secretase system cleaves both the full-length E-cadherin and a transmembrane C-terminal fragment, derived from a metalloproteinase cleavage after the E-cadherin ectodomain residue Pro700. The PS1/gamma-secretase cleavage dissociates E-cadherins, beta-catenin and alpha-catenin from the cytoskeleton, thus promoting disassembly of the E-cadherin-catenin adhesion complex. Furthermore, this cleavage releases the cytoplasmic E-cadherin to the cytosol and increases the levels of soluble beta- and alpha-catenins. Thus, the PS1/gamma-secretase system stimulates disassembly of the E-cadherin- catenin complex and increases the cytosolic pool of beta-catenin, a key regulator of the Wnt signaling pathway.
Bidirectional signaling triggered by interacting ephrinB receptors (EphB) and ephrinB ligands is crucial for development and function of the vascular and nervous systems. A signaling cascade triggered by this interaction involves activation of Src kinase and phosphorylation of ephrinB. The mechanism, however, by which EphB activates Src in the ephrinB-expressing cells is unknown. Here we show that EphB stimulates a metalloproteinase cleavage of ephrinB2, producing a carboxy-terminal fragment that is further processed by PS1/c-secretase to produce intracellular peptide ephrinB2/CTF2. This peptide binds Src and inhibits its association with inhibitory kinase Csk, allowing autophosphorylation of Src at residue tyr418. EphrinB2/CTF2-activated Src phosphorylates ephrinB2 and inhibits its processing by c-secretase. These data show that the PS1/c-secretase system controls Src activation and ephrinB phosphorylation by regulating production of Src activator ephrinB2/CTF2. Accordingly, csecretase inhibitors prevented the EphB-induced sprouting of endothelial cells and the recruitment of Grb4 to ephrinB. PS1 FAD and c-secretase dominant-negative mutants inhibited the EphB-induced cleavage of ephrinB2 and Src autophosphorylation, raising the possibility that FAD mutants interfere with the functions of Src and ephrinB2 in the CNS.
Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important cellular effector whose functions include the regulation of ion channels and membrane trafficking. Aberrant PIP 2 metabolism has also been implicated in a variety of human disease states, e.g., cancer and diabetes. Here we report that familial Alzheimer's disease (FAD)-associated presenilin mutations cause an imbalance in PIP 2 metabolism. We find that the transient receptor potential melastatin 7 (TRPM7)-associated Mg 2؉ -inhibited cation (MIC) channel underlies ion channel dysfunction in presenilin FAD mutant cells, and the observed channel deficits are restored by the addition of PIP 2, a known regulator of the MIC/TRPM7 channel. Lipid analyses show that PIP 2 turnover is selectively affected in FAD mutant presenilin cells. We also find that modulation of cellular PIP 2 closely correlates with 42-residue amyloid -peptide (A42) levels. Our data suggest that PIP 2 imbalance may contribute to Alzheimer's disease pathogenesis by affecting multiple cellular pathways, such as the generation of toxic A42 as well as the activity of the MIC/TRPM7 channel, which has been linked to other neurodegenerative conditions. Thus, our study suggests that brain-specific modulation of PIP 2 may offer a therapeutic approach in Alzheimer's disease.-amyloid precursor protein ͉ channel ͉ secretase ͉ transient receptor potential melastatin 7 (TRPM7) ͉ capacitative calcium entry
Background: The diagnosis of AML with monocytic differentiation is limited by the lack of highly sensitive and specific monocytic markers. Immunoglobulin-like transcript 3 (ILT3) is an immune inhibitory receptor expressed by myelomonocytic cells and at high levels by tolerogenic dendritic cells.Methods: Using flow cytometry, we analyzed the expression of ILT3 in 37 patients with AML and 20 patients with no detectable disease.Results: We showed that ILT3 was expressed in all cases of AML displaying monocytic differentiation (FAB M4/M5; N 5 18), but not in AML M1/M2 and M3 (N 5 19; P < 0.0001). Co-expression of ILT3 and immature cell markers, such as CD34 and CD117, was observed in monoblastic leukemia. ILT3 expression was preserved after treatment in M4/M5 patients with refractory or relapsed disease. ILT3 expression was associated with the presence of cytogenetic abnormalities linked to an intermediate prognosis (P 5 0.001). Rare CD45dimCD341CD1171ILT31 cells were identified in noninvolved bone marrow, suggesting that ILT3 expression is acquired at an early stage by normal myelomonocytic precursors.Conclusions: ILT3 is a highly sensitive and specific marker which distinguishes AML with monocytic differentiation from other types of AML. Testing of ILT3 expression should be incorporated into the initial diagnostic work-up and monitoring of patients with AML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.