Ni/8 mol% Y2O3-stabilized zirconia cermets are used in thin-film electrolyte solid-oxide fuel cells as support substrates. Rapid oxidation of the metallic Ni can cause failure of the substrate and of the whole system. The rate of Ni oxidation in air and in an inert atmosphere containing water vapor was determined as a function of temperature between 500 and 950 °C. A logarithmic rate law describes the oxidation kinetics in air, whereas a linear rate law fits the first branch of the curve of the experimental data in a humidified inert atmosphere. The substrate exhibits no significant mechanical degradation after uniform oxidation under moderate conditions. However, the observed bending of the samples after oxidation in humidified argon, due to the nonuniform oxidation, can cause damage to fuel cell
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.