The dynamics of the resting brain exhibit transitions between a small number of discrete networks, each remaining stable for tens to hundreds of milliseconds. These functional microstates are thought to be the building blocks of spontaneous consciousness. The electroencephalogram (EEG) is a useful tool for imaging microstates, and EEG microstate analysis can potentially give insight into altered brain dynamics underpinning cognitive impairment in disorders such as Alzheimer’s disease (AD). Since EEG is non-invasive and relatively inexpensive, EEG microstates have the potential to be useful clinical tools for aiding early diagnosis of AD. In this study, EEG was collected from two independent cohorts of probable AD and cognitively healthy control participants, and a cohort of mild cognitive impairment (MCI) patients with four-year clinical follow-up. The microstate associated with the frontoparietal working-memory/attention network was altered in AD due to parietal inactivation. Using a novel measure of complexity, we found microstate transitioning was slower and less complex in AD. When combined with a spectral EEG measure, microstate complexity could classify AD with sensitivity and specificity > 80%, which was tested on an independent cohort, and could predict progression from MCI to AD in a small preliminary test cohort of 11 participants. EEG microstates therefore have potential to be a non-invasive functional biomarker of AD.
BackgroundHigh levels of alcohol consumption and increases in heavy episodic drinking (binge drinking) are a growing public concern, due to their association with increased risk of personal and societal harm. Alcohol consumption has been shown to be sensitive to factors such as price and availability. The aim of this study was to explore the influence of glass shape on the rate of consumption of alcoholic and non-alcoholic beverages.MethodsThis was an experimental design with beverage (lager, soft drink), glass (straight, curved) and quantity (6 fl oz, 12 fl oz) as between-subjects factors. Social male and female alcohol consumers (n = 159) attended two experimental sessions, and were randomised to drink either lager or a soft drink from either a curved or straight-sided glass, and complete a computerised task identifying perceived midpoint of the two glasses (order counterbalanced). Ethical approval was granted by the Faculty of Science Research Ethics Committee at the University of Bristol. The primary outcome measures were total drinking time of an alcoholic or non-alcoholic beverage, and perceptual judgement of the half-way point of a straight and curved glass.ResultsParticipants were 60% slower to consume an alcoholic beverage from a straight glass compared to a curved glass. This effect was only observed for a full glass and not a half-full glass, and was not observed for a non-alcoholic beverage. Participants also misjudged the half-way point of a curved glass to a greater degree than that of a straight glass, and there was a trend towards a positive association between the degree of error and total drinking time.ConclusionsGlass shape appears to influence the rate of drinking of alcoholic beverages. This may represent a modifiable target for public health interventions.
and rs7000831; see Addington et al. 7 and http://www.
The visual mismatch negativity (vMMN) response is typically examined by subtracting the average response to a deviant stimulus from the response to the standard. This approach, however, can omit a critical element of the neural response, i.e., the non-phase-locked (“induced”) oscillatory activity. Recent investigations of the oscillatory characteristics of the auditory mismatch negativity (aMMN) identified a crucial role for theta phase locking and power. Oscillatory characteristics of the vMMN from 39 healthy young adults were investigated in order to establish whether theta phase locking plays a similar role in the vMMN response. We explored changes in phase locking, overall post-stimulus spectral power as well as non-phase-locked spectral power compared to baseline (−300 to 0 ms). These were calculated in the frequency range of 4–50 Hz and analysed using a non-parametric cluster based analysis. vMMN was found intermittently in a broad time interval 133–584 ms post-stimulus and was associated with an early increase in theta phase locking (75–175 ms post-stimulus) that was not accompanied by an increase in theta power. Theta phase locking in the absence of an increase in theta power has been associated with the distribution and flow of information between spatially disparate neural locations. Additionally, in the 450–600 ms post-stimulus interval, deviant stimuli yielded a stronger decrease in non-phase-locked alpha power than standard stimuli, potentially reflecting a shift in attentional resources following the detection of change. The examination of oscillatory activity is crucial to the comprehensive analysis of a neural response to a stimulus, and when combined with evoked potentials (EPs) provide a more complete picture of neurocognitive processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.