The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.
In the budding yeast Saccharomyces cerevisiae, the G1 cyclins Cln1, Cln2 and Cln3 regulate entry into the cell cycle (Start) by activating the Cdc28 protein kinase. We find that Cln3 is a much rarer protein than Cln1 or Cln2 and has a much weaker associated histone H1 kinase activity. Unlike Cln1 and Cln2, Cln3 is not significantly cell cycle regulated, nor is it down‐regulated by mating pheromone‐induced G1 arrest. An artificial burst of CLN3 expression early in G1 phase accelerates Start and rapidly induces at least five other cyclin genes (CLN1, CLN2, HCS26, ORFD and CLB5) and the cell cycle‐specific transcription factor SWI4. In similar experiments, CLN1 is less efficient than CLN3 at activating Start. Strikingly, expression of HCS26, ORFD and CLB5 is dependent on CLN3 in a cln1 cln2 strain, possibly explaining why CLN3 is essential in the absence of CLN1 and CLN2. To explain the potent ability of Cln3 to activate Start, despite its apparently weak biochemical activity, we propose that Cln3 may be an upstream activator of the G1 cyclins which directly catalyze Start. Given the large number of known cyclins, such cyclin cascades may be a common theme in cell cycle control.
WHI1‐1 is a dominant mutation that reduces cell volume by allowing cells to commit to division at abnormally small sizes, shortening the G1 phase of the cell cycle. The gene was cloned, and dosage studies indicated that the normal gene activated commitment to division in a dose‐dependent manner, and that the mutant gene had a hyperactive but qualitatively similar function. Mild over‐expression of the mutant gene eliminated G1 phase, apparently entirely relaxing the normal G1 size control, but revealing hitherto cryptic controls. Sequence analysis showed that the hyperactivity of the mutant was caused by the loss of the C‐terminal third of the wild‐type protein. This portion of the protein contained PEST regions, which may be signals for protein degradation. The WHI1 protein had sequence similarity to clam cyclin A, to sea urchin cyclin and to Schizosaccharomyces pombe cdc13, a cyclin homolog. Since cyclins are inducers of mitosis, WHI1 may be a direct regulator of commitment to division. A probable accessory function of the WHI1 activator is to assist recovery from alpha factor arrest; WHI1‐1 mutant cells could not be permanently arrested by pheromone, consistent with a hyperactivation of division.
In Saccharomyces cerevisiae, several of the proteins involved in the Start decision have been identified; these include the Cdc28 protein kinase and three cyclin‐like proteins, Cln1, Cln2 and Cln3. We find that Cln3 is a very unstable, low abundance protein. In contrast, the truncated Cln3‐1 protein is stable, suggesting that the PEST‐rich C‐terminal third of Cln3 is necessary for rapid turnover. Cln3 associates with Cdc28 to form an active kinase complex that phosphorylates Cln3 itself and a co‐precipitated substrate of 45 kDa. The cdc34‐2 allele, which encodes a defective ubiquitin conjugating enzyme, dramatically increases the kinase activity associated with Cln3, but does not affect the half‐life of Cln3. The Cln‐‐Cdc28 complex is inactivated by treatment with non‐specific phosphatases; prolonged incubation with ATP restores kinase activity to the dephosphorylated kinase complex. It is thus possible that phosphate residues essential for Cln‐Cdc28 kinase activity are added autocatalytically. The multiple post‐translational controls on Cln3 activity may help Cln3 tether division to growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.