The protein tyrosine kinase PYK2, which is highly expressed in the central nervous system, is rapidly phosphorylated on tyrosine residues in response to various stimuli that elevate the intracellular calcium concentration, as well as by protein kinase C activation. Activation of PYK2 leads to modulation of ion channel function and activation of the MAP kinase signalling pathway. PYK2 activation may provide a mechanism for a variety of short- and long-term calcium-dependent signalling events in the nervous system.
The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.
West Nile virus (WNV), and related flaviviruses such as tick-borne encephalitis, Japanese encephalitis, yellow fever and dengue viruses, constitute a significant global human health problem1. However, our understanding of the molecular interaction of WNV (and related flaviviruses) with mammalian host cells is limited1. WNV encodes only 10 proteins, implying that the virus may use many cellular proteins for infection1. WNV enters the cytoplasm through pHdependent endocytosis, undergoes cycles of translation and replication, assembles progeny virions in association with endoplasmic reticulum, and exits along the secretory pathway1 -3. RNAinterference (RNAi) presents a powerful forward genetics approach to dissect virus-host cell interactions4 -6. Here we report the identification of 305 host proteins impacting WNV infection,
The movement of lipids within and between intracellular membranes is mediated by different lipid transport mechanisms and is crucial for maintaining the identities of different cellular organelles. Non-vesicular lipid transport has a crucial role in intracellular lipid trafficking and distribution, but its underlying mechanisms remain unclear. Lipid-transfer proteins (LTPs), which regulate diverse lipid-mediated cellular processes and accelerate vectorial transport of lipid monomers between membranes in vitro, could potentially mediate non-vesicular intracellular lipid trafficking. Understanding the mechanisms by which lipids are transported and distributed between cellular membranes, and elucidating the role of LTPs in intracellular lipid transport and homeostasis, are currently subjects of intensive study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.