True recurrences after LVIHR do occur but should be preventable with good surgical technique. Pseudo-recurrences are more common and may mimic true recurrence. We recommend computed tomography (CT) to clarify the diagnosis and determine the indication for revisional surgery.
Renal ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury. Toll-like receptor 4 (TLR4) mediates sterile inflammation following renal IRI. Heat shock protein 90 (Hsp90) inhibition is a potential strategy to reduce IRI, and AT13387 is a novel Hsp90 inhibitor with low toxicity. This study assessed if pre-treatment with AT13387 could reduce renal IRI and established if the mechanism of protection involved a reduction in inflammatory signalling. Mice were pre-treated with AT13387 prior to renal IRI. 24 h later, renal function was determined by serum creatinine, kidney damage by tubular necrosis score, renal TLR4 expression by PCR and inflammation by cytokine array. In vitro, human embryonic kidney cells were co-transfected to express TLR4 and a secreted alkaline phosphatase NF-κB reporter. Cells were pre-treated with AT13387 and exposed to endotoxin-free hyaluronan to stimulate sterile TLR4-specific NF-κB inflammatory activation. Following renal IRI, AT13387 significantly reduced serum creatinine, tubular necrosis, TLR4 expression and NF-κB-dependent chemokines. In vitro, AT13387-treatment resulted in breakdown of IκB kinase, which abolished TLR4-mediated NF-κB activation by hyaluronan. AT13387 is a new agent with translational potential that reduces renal IRI. The mechanism of protection may involve breakdown of IκB kinase and repression of TLR4-mediated NF-κB inflammatory activity.
Cardiovascular Magnetic Resonance (CMR) has become a primary tool for non-invasive assessment of cardiovascular anatomy, pathology and function. Existing contrast agents have been utilised for the identification of infarction, fibrosis, perfusion deficits and for angiography. Novel ultrasmall superparamagnetic particles of iron oxide (USPIO) contrast agents that are taken up by inflammatory cells can detect cellular inflammation non-invasively using CMR, potentially aiding the diagnosis of inflammatory medical conditions, guiding their treatment and giving insight into their pathophysiology. In this review we describe the utilization of USPIO as a novel contrast agent in vascular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.