The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.
Purpose: Epithelial-to-mesenchymal transition (EMT) is a process whereby cells acquire molecular alterations that facilitate cell motility and invasion. In preliminary studies, we observed that oxaliplatin-resistant (OxR) colorectal cancer (CRC) cells underwent morphologic changes suggestive of a migratory phenotype, leading us to hypothesize that OxR CRC cells undergo EMT. Experimental Design: The human CRC cell lines KM12L4 and HT29 were exposed to increasing doses of oxaliplatin to establish stable cell lines resistant to oxaliplatin. Migration and invasion were assessed by modified Boyden chamber assays. Morphologic and molecular changes characteristic of EMT were determined by immunofluorescence staining and Western blot analyses. Results: The OxR cells showed phenotypic changes consistent with EMT: spindle-cell shape, loss of polarity, intercellular separation, and pseudopodia formation. KM12L4 and HT29 OxR cells exhibited an f8-to 15-fold increase in migrating and invading cells, respectively (P < 0.005 for both). Immunofluorescence staining of OxR cells revealed translocation of E-cadherin and h-catenin from their usual membrane-bound complex to the cytoplasm and nucleus, respectively. The OxR cells also had decreased expression of the epithelial adhesion molecules E-cadherin and plakoglobin and an increase in the mesenchymal marker vimentin. The KM12L4 OxR cells exhibited increased nuclear expression of Snail, an EMT-regulatory transcription factor, whereas the HT29 OxR cells exhibited an increase in nuclear expression of the EMT-associated transcription factor nuclear factor nB. Conclusion: We hypothesize that induction of EMT may contribute to the decreased efficacy of therapy in chemoresistant CRC, as the tumor cells switch from a proliferative to invasive phenotype. Further understanding of the mechanisms of chemoresistance in CRC will enable improvements in chemotherapy for metastatic disease.Oxaliplatin is a third-generation platinum compound and is the first platinum-based compound to show efficacy in the treatment of colorectal cancer (CRC; ref. 1). Its use in combination with 5-fluorouracil and leucovorin (FOLFOX) for metastatic CRC has led to response rates >50% and median survival approaching 2 years (2, 3). FOLFOX has also been found to be very effective in the adjuvant setting, leading to an increase in the number of patients who are cured after surgical resection when compared with the use of 5-fluorouracil and leucovorin alone (4). Despite these impressive accomplishments, virtually all metastatic CRC eventually become resistant to oxaliplatin, with a median time to progression of f8 months (5). Hypotheses on the mechanisms of oxaliplatin resistance include defects in oxaliplatin uptake, impaired DNA adduct formation, and increased expression of a copper efflux transporter (6 -9).Epithelial-to-mesenchymal transition (EMT) is a process initially observed in embryonic development in which cells lose epithelial characteristics and gain mesenchymal properties to increase motility and...
5-fluorouracil (5FU) and oxaliplatin are standard therapy for metastatic colorectal cancer (CRC), but the development of chemoresistance is inevitable. Since cancer stem cells (CSCs) are hypothesized to be chemoresistant, we investigated CSC properties in newly developed chemoresistant CRC cell lines and sought to identify targets for therapy. The human CRC cell line HT29 was exposed to increasing doses of 5FU (HT29/5FU-R) or oxaliplatin (HT29/Ox) to achieve resistance at clinically relevant doses. Western blotting and flow cytometry were done to determine molecular alterations. The insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibody (MoAb) AVE-1642 was used to inhibit signaling in vitro and in vivo using murine xenograft models. HT29/5FU-R and HT29/OxR demonstrated 16- to 30-fold enrichment of CD133+ cells and 2-fold enrichment of CD44+ cells (putative CRC CSC markers). Resistant cells were enriched 5- to 22-fold for double-positive (CD133+/CD44+) cells. Consistent with the CSC phenotype, resistant cells exhibited a decrease in cellular proliferation in vitro (47–59%; p<0.05). Phosphorylated and total IGF-1R levels were increased in resistant cell lines. HT29/5FU-R and HT29/OxR cells were ~5-fold more responsive to IGF-1R inhibition relative to parental cells (p<0.01) in vitro. Tumors derived from HT29/OxR cells demonstrated significantly greater growth inhibition in response to an IGF-1R MoAB than did parental cells (p<0.05). Chemoresistant CRC cells are enriched for CSC markers and the CSC phenotype. Chemotherapy-induced IGF-1R activation provided for enhanced sensitivity to IGF-1R targeted therapy. Identification of CSC targets presents a novel therapeutic approach in this disease.
This study provides level 1 data, suggesting that elimination of intraperitoneal drainage in all cases of PD increases the frequency and severity of complications.
Pancreatic cancer is an aggressive malignancy with a poor prognosis. The disease and its treatment can cause significant nutritional impairments that often adversely impact patient quality of life (QOL). The pancreas has both exocrine and endocrine functions and, in the setting of cancer, both systems may be affected. Pancreatic exocrine insufficiency (PEI) manifests as weight loss and steatorrhea, while endocrine insufficiency may result in diabetes mellitus. Surgical resection, a central component of pancreatic cancer treatment, may induce or exacerbate these dysfunctions. Nutritional and metabolic dysfunctions in patients with pancreatic cancer lack characterization, and few guidelines exist for nutritional support in patients after surgical resection. We reviewed publications from the past two decades (1995–2016) addressing the nutritional and metabolic status of patients with pancreatic cancer, grouping them into status at the time of diagnosis, status at the time of resection, and status of nutritional support throughout the diagnosis and treatment of pancreatic cancer. Here, we summarize the results of these investigations and evaluate the effectiveness of various types of nutritional support in patients after pancreatectomy for pancreatic adenocarcinoma (PDAC). We outline the following conservative perioperative strategies to optimize patient outcomes and guide the care of these patients: (1) patients with albumin < 2.5 mg/dL or weight loss > 10% should postpone surgery and begin aggressive nutrition supplementation; (2) patients with albumin < 3 mg/dL or weight loss between 5% and 10% should have nutrition supplementation prior to surgery; (3) enteral nutrition (EN) should be preferred as a nutritional intervention over total parenteral nutrition (TPN) postoperatively; and, (4) a multidisciplinary approach should be used to allow for early detection of symptoms of endocrine and exocrine pancreatic insufficiency alongside implementation of appropriate treatment to improve the patient’s quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.