When a layer of fluid is heated uniformly from below and cooled from above, a cellular regime of steady convection is set up at values of the Rayleigh number exceeding a critical value. A method is presented here to determine the form and amplitude of this convection. The non-linear equations describing the fields of motion and temperature are expanded in a sequence of inhomogeneous linear equations dependent upon the solutions of the linear stability problem. We find that there are an infinite number of steady-state finite amplitude solutions (having different horizontal plan-forms) which formally satisfy these equations. A criterion for ‘relative stability’ is deduced which selects as the realized solution that one which has the maximum mean-square temperature gradient. Particular conclusions are that for a large Prandtl number the amplitude of the convection is determined primarily by the distortion of the distribution of mean temperature and only secondarily by the self-distortion of the disturbance, and that when the Prandtl number is less than unity self-distortion plays the dominant role in amplitude determination. The initial heat transport due to convection depends linearly on the Rayleigh number; the heat transport at higher Rayleigh numbers departs only slightly from this linear dependence. Square horizontal plan-forms are preferred to hexagonal plan-forms in ordinary fluids with symmetric boundary conditions. The proposed finite amplitude method is applicable to any model of shear flow or convection with a soluble stability problem.
When a rotating layer of fluid is heated uniformly from below and cooled from above, the onset of instability is inhibited by the rotation. The first part of this paper treats the stability problem as it was considered by Chandrasekhar (1953), but with particular emphasis on the physical interpretation of the results. It is shown that the time-dependent (overstable) motions occur because they can reduce the stabilizing effect of rotation. It is also shown that the boundary of a steady convection cell is distorted by the rotation in such a way that the wave length of the cell measured along the distorted boundary is equal to the wavelength of the non-rotating cell. This conservation of cellular wavelength is traced to the constancy of horizontal vorticity in the rotating and non-rotating systems. In the finite-amplitude investigation the analysis, which is pivoted about the linear stability problem, indicates that the fluid can become unstable to finite-amplitude disturbances before it becomes unstable to infinitesimal perturbations. The finite-amplitude motions generate a non-linear vorticity which tends to counteract the vorticity generated by the imposed constraint of rotation. Under experimental conditions the two fluids, mercury and air, which are considered in this paper, will not exhibit this finite amplitude instability. However, a fluid with a sufficiently small Prandtl number will become unstable to finite-amplitude perturbations. The special role of viscosity as an energy releasing mechanism in this problem and in the Orr-Sommerfeld problem suggests that the occurrence of a finite-amplitude instability depends on this dual role of viscosity (i.e. as an energy releasing mechanism as well as the more familiar dissipative mechanism). The relative stability criterion developed by Malkus & Veronis (1958) is used to determine the preferred type of cellular motions which can occur in the fluid. This preferred motion is a function of the Prandtl number and the Taylor number. In the case of air it is shown that overstable square cells become preferred in finite amplitude, even though steady convective motions occur at a lower Rayleigh number.
A stabilizing gradient of solute inhibits the onset of convection in a fluid which is subjected to an adverse temperature gradient. Furthermore, the onset of instability may occur as an oscillatory motion because of the stabilizing effect of the solute. These results are obtained from linear stability theory which is reviewed briefly in the following paper before finite-amplitude results for two-dimensional flows are considered. It is found that a finite-amplitude instability may occur first for fluids with a Prandtl number somewhat smaller than unity. When the Prandtl number is equal to unity or greater, instability first sets in as an oscillatory motion which subsequently becomes unstable to disturbances which lead to steady, convecting cellular motions with larger heat flux. A solute Rayleigh number, Rs, is defined with the stabilizing solute gradient replacing the destabilizing temperature gradient in the thermal Rayleigh number. When Rs is large compared with the critical Rayleigh number of ordinary Bénard convection, the value of the Rayleigh number at which instability to finite-amplitude steady modes can set in approaches the value of Rs. Hence, asymptotically this type of instability is established when the fluid is marginally stratified. Also, as Rs → ∞ an effective diffusion coefficient, Kρ, is defined as the ratio of the vertical density flux to the density gradient evaluated at the boundary and it is found that κρ = √(κκs) where κ, κs are the diffusion coefficients for temperature and solute respectively. A study is made of the oscillatory behaviour of the fluid when the oscillations have finite amplitudes; the periods of the oscillations are found to increase with amplitude. The horizontally averaged density gradients change sign with height in the oscillating flows. Stably stratified fluid exists near the boundaries and unstably stratified fluid occupies the mid-regions for most of the oscillatory cycle. Thus the step-like behaviour of the density field which has been observed experimentally for time-dependent flows is encountered here numerically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.