Dysfunctional interactions of metal ions, especially Cu, Zn, and Fe, with the amyloid-beta (A beta) peptide are hypothesized to play an important role in the etiology of Alzheimer's disease (AD). In addition to direct effects on A beta aggregation, both Cu and Fe catalyze the generation of reactive oxygen species (ROS) in the brain further contributing to neurodegeneration. Disruption of these aberrant metal-peptide interactions via chelation therapy holds considerable promise as a therapeutic strategy to combat this presently incurable disease. To this end, we developed two multifunctional carbohydrate-containing compounds N,N'-bis[(5-beta-D-glucopyranosyloxy-2-hydroxy)benzyl]-N,N'-dimethyl-ethane-1,2-diamine (H2GL1) and N,N'-bis[(5-beta-D-glucopyranosyloxy-3-tert-butyl-2-hydroxy)benzyl]-N,N'-dimethyl-ethane-1,2-diamine (H2GL2) for brain-directed metal chelation and redistribution. Acidity constants were determined by potentiometry aided by UV-vis and 1H NMR measurements to identify the protonation sites of H2GL1,2. Intramolecular H bonding between the amine nitrogen atoms and the H atoms of the hydroxyl groups was determined to have an important stabilizing effect in solution for the H2GL1 and H2GL2 species. Both H2GL1 and H2GL2 were found to have significant antioxidant capacity on the basis of an in vitro antioxidant assay. The neutral metal complexes CuGL1, NiGL1, CuGL2, and NiGL2 were synthesized and fully characterized. A square-planar arrangement of the tetradentate ligand around CuGL2 and NiGL2 was determined by X-ray crystallography with the sugar moieties remaining pendant. The coordination properties of H2GL1,2 were also investigated by potentiometry, and as expected, both ligands displayed a higher affinity for Cu2+ over Zn2+ with H2GL1 displaying better coordinating ability at physiological pH. Both H2GL1 and H2GL2 were found to reduce Zn2+- and Cu2+- induced Abeta1-40 aggregation in vitro, further demonstrating the potential of these multifunctional agents as AD therapeutics.
Summary Homeostatic programs balance immune protection and self-tolerance. Such mechanisms likely impact autoimmunity and tumor formation, respectively. How homeostasis is maintained and impacts tumor surveillance is unknown. Here, we find that different immune mononuclear phagocytes share a conserved steady-state program during differentiation and entry into healthy tissue. IFNγ is necessary and sufficient to induce this program, revealing a key instructive role. Remarkably, homeostatic and IFNγ-dependent programs enrich across primary human tumors, including melanoma, and stratify survival. Single-cell RNA sequencing (RNA-seq) reveals enrichment of homeostatic modules in monocytes and DCs from human metastatic melanoma. Suppressor-of-cytokine-2 (SOCS2) protein, a conserved program transcript, is expressed by mononuclear phagocytes infiltrating primary melanoma and is induced by IFNγ. SOCS2 limits adaptive anti-tumoral immunity and DC-based priming of T cells in vivo, indicating a critical regulatory role. These findings link immune homeostasis to key determinants of anti-tumoral immunity and escape, revealing co-opting of tissue-specific immune development in the tumor microenvironment.
Polymorphisms in the intracellular pattern recognition receptor gene NLRP3 have been associated with susceptibility to Crohn’s disease, a type of inflammatory bowel disease (IBD). Following tissue damage or infection, NLRP3 triggers the formation of inflammasomes, containing NLRP3, ASC and caspase-1, which mediate secretion of IL-1β and IL-18. However, the precise role of NLRP3 inflammasomes in mucosal inflammation and barrier protection remains unclear. Here we show that upon infection with the attaching/effacing (A/E) intestinal pathogen Citrobacter rodentium, Nlrp3−/− and Asc−/− mice displayed increased bacterial colonization and dispersion, more severe weight loss and exacerbated intestinal inflammation. Analyses of irradiation bone marrow chimeras revealed that protection from disease was mediated through Nlrp3 activation in non-hematopoietic cells and was initiated very early after infection. Thus, early activation of Nlrp3 in intestinal epithelial cells limits pathogen colonization and prevents subsequent pathology, potentially providing a functional link between NLRP3 polymorphisms and susceptibility to IBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.