Beta,beta-carotene 15,15'-dioxygenase cleaves beta,beta-carotene into two molecules of retinal, and is the key enzyme in the metabolism of beta,beta-carotene to vitamin A. The enzyme has been known for more than 40 years, yet all attempts to purify the protein to homogeneity have failed. Recently, the successful cloning and sequencing of an enzyme with beta,beta-carotene 15,15'-dioxygenase activity from chicken, as well as from Drosophila, has been reported. Here, we describe in detail our attempt to enrich the chicken beta,beta-carotene 15,15'-dioxygenase to such an extent as to allow determination of partial amino acid sequences, which were then used to design degenerate oligonucleotides. Screening of a chicken duodenal expression library yielded a full-length clone containing a coding sequence of 1578 bp. Functional expression in Escherichia coli and in eukaryotic cell lines confirmed that we had cloned the first vertebrate dioxygenase that cleaves beta,beta-carotene at the central 15,15'-double bond. By performing a sequence homology search, the cDNA sequence of the mouse homologue was found as an expressed sequence tag (EST) in the gene bank. At the amino-acid level, the degree of homology between the chicken and mouse sequences is 81%. Thus beta,beta-carotene 15,15'-dioxygenase can be considered as being an enzyme that is evolutionarily rather well conserved. We established the expression pattern of beta,beta-carotene 15,15'-dioxygenase in chicken and mouse tissues with a combination of Northern blots and in situ hybridization. The mRNA for beta,beta-carotene 15,15'-dioxygenase was localized primarily in duodenal villi, as well as in liver and in tubular structures of lung and kidney. These new findings demonstrate that beta,beta-carotene 15,15'-dioxygenase is also expressed in epithelial structures, where it serves to provide the tissue-specific vitamin A supply.
According to the USP, 2R,4'R,8'R-alpha-tocopheryl acetate (RRR-alpha-TAc) is 1.36 times more active than all-rac-alpha-tocopheryl acetate (all-rac-alpha-TAc). The all-rac form contains 12.5% each of the stereoisomers RRR, RRS, RSR, RSS, SSS, SSR, SRS and SRR, which display different biopotencies. In the present study, female rats fed a vitamin E-deficient diet were administered 0.82 mg of all-rac-alpha-TAc or 0.60 mg of RRR-alpha-TAc daily for up to 90 d. alpha-Tocopherol concentrations in liver, brain, adipose tissue and plasma were not significantly different among groups on treatment d 64 and 90. Thus, equipotent dosages of all-rac-alpha-TAc or RRR-alpha-TAc resulted in equimolar alpha-tocopherol plasma and tissue concentrations. A comparison with rats administered tocopherol-free placebo showed that plasma and tissue alpha-tocopherol of alpha-TAc-treated rats represented alpha-tocopherol uptake during the repletion period. The eight individual alpha-tocopherol stereoisomers in tissues and plasma were determined by chiral HPLC and capillary gas chromatography. Rats treated with all-rac-alpha-TAc preferentially accumulated the four 2R alpha-tocopherol stereoisomers (15-22% each, sum of all 2R = 70-86%) in tissues and plasma. The remaining 14-30% were 2S stereoisomers with a predominance of the SRS form. In conclusion, all-rac-alpha-TAc administration led to the presence of all eight alpha-tocopherol stereoisomers in rat liver, brain, adipose tissue and plasma. The four 2R stereoisomers including RRR-alpha-tocopherol were equally and significantly enriched. This confirmed that the configuration at C-2 of the alpha-tocopherol molecule has a major impact on stereoisomer biodiscrimination. Furthermore, the results are in agreement with the hypothesis that for alpha-tocopherol stereoisomers, biopotency differences are related to corresponding differences of alpha-tocopherol concentrations.
Ultraviolet light A (UVA) exposure is thought to cause skin aging mainly by singlet oxygen ((1)O(2))-dependent pathways. Using microarrays, we assessed whether pre-treatment with the (1)O(2) quencher beta-carotene (betaC; 1.5 microM) prevents UVA-induced gene regulation in HaCaT human keratinocytes. Downregulation of growth factor signaling, moderate induction of proinflammatory genes, upregulation of immediate early genes including apoptotic regulators and suppression of cell cycle genes were hallmarks of the UVA effect. Of the 568 UVA-regulated genes, betaC reduced the UVA effect for 143, enhanced it for 180, and did not interact with UVA for 245 genes. The different interaction modes imply that betaC/UVA interaction involved multiple mechanisms. In unirradiated keratinocytes, gene regulations suggest that betaC reduced stress signals and extracellular matrix (ECM) degradation, and promoted keratinocyte differentiation. In irradiated cells, expression profiles indicate that betaC inhibited UVA-induced ECM degradation, and enhanced UVA induction of tanning-associated protease-activated receptor 2. Combination of betaC-promoted keratinocyte differentiation with the cellular "UV response" caused synergistic induction of cell cycle arrest and apoptosis. In conclusion, betaC at physiological concentrations interacted with UVA effects in keratinocytes by mechanisms that included, but were not restricted to (1)O(2) quenching. The retinoid effect of betaC was minor, indicating that the betaC effects reported here were predominantly mediated through vitamin A-independent pathways.
beta,beta-Carotene 15,15'-monooxygenase (formerly termed beta,beta-carotene 15,15'-dioxygenase, EC 1.13.11.21) catalyzes the conversion of provitamin A carotenoids to retinal in vertebrate tissues. In the present study, we investigated whether preformed vitamin A or beta-carotene and its direct metabolites can regulate the enzyme activity in vivo. We found dose-dependent decreases in intestinal beta,beta-carotene monooxygenase activity after oral administration to rats of retinyl acetate (up to -79%), beta-carotene (up to -79%), apo-8'-carotenal (up to -56%), all-trans retinoic acid (up to -88%), and 9-cis retinoic acid (up to -67%). Liver beta,beta-carotene 15,15'-monooxygenase (betaCMOOX) activity was not affected. Apo-12'carotenal and the retinoic acid receptor (RAR) alpha antagonist Ro 41-5253 significantly increased the intestinal enzyme activity by 55 and 94%, respectively. When beta-carotene was administered to rats pretreated with the two cytochrome P(450) (CYP) inducers, pentobarbital and naphthoflavone, the intestinal betaCMOOX activity increased by 39%. In a transcriptional study in chickens, treatment with retinoic acid resulted in low expression of the intestinal betaCMOOX. Our data suggest that retinoids and carotenoids might regulate betaCMOOX expression by a transcriptional feedback mechanism via interaction with members of the RAR family.
Mutations of mitochondrial DNA accumulate during normal aging and can be detected at elevated levels in skin prematurely aged by chronic exposure to ultraviolet (UV) light (photoaging). In normal human fibroblasts, we have previously demonstrated that mtDNA deletions are induced by repetitive exposure to sublethal doses of UVA radiation mediated through singlet oxygen. Betacarotene is a known quencher of ROS and singlet oxygen in particular, and it is widely applied in photoprotective compounds. Therefore we investigated whether in our in vitro system, betacarotene is capable of protecting from the induction of photoaging-associated mtDNA deletions. All-E (trans) betacarotene was tested at doses from 0.25 to 3.0 microM for uptake into cells as well as its protective capacity. Assessment of cellular uptake of all-E betacarotene measured by HPLC revealed a dose dependent increase of intracellular concentrations, as well as an increase in oxidative metabolites. UVA-exposure led to a decrease of all-E-betacarotene, its Z-isomers and oxidative metabolites. Assessment of mtDNA deletions by PCR revealed reduced levels of mtDNA mutagenesis in cells coincubated with betacarotene at concentrations of 0.5 microM and higher. Taken together, these results indicate that betacarotene (i) is taken up into the cell in a dose dependent manner, (ii) interacts with UVA radiation in the cell and (iii) shows protective properties from the induction of a photoaging-associated mtDNA mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.