Epidemiological evidence links consumption of lycopene, the red carotenoid of tomato, to reduced prostate cancer risk. We investigated the effect of lycopene in normal prostate tissue to gain insight into the mechanisms, by which lycopene can contribute to primary prostate cancer prevention. We supplemented young rats with 200 ppm lycopene for up to 8 wk, measured the uptake into individual prostate lobes, and analyzed lycopene-induced gene regulations in dorsal and lateral lobes after 8 wk of supplementation. Lycopene accumulated in all four prostate lobes over time, with all-trans lycopene being the predominant isoform. The lateral lobe showed a significantly higher total lycopene content than the other prostate lobes. Transcriptomics analysis revealed that lycopene treatment mildly but significantly reduced gene expression of androgen-metabolizing enzymes and androgen targets. Moreover, local expression of IGF-I was decreased in the lateral lobe. Lycopene also consistently reduced transcript levels of proinflammatory cytokines, immunoglobulins, and immunoglobulin receptors in the lateral lobe. This indicates that lycopene reduced inflammatory signals in the lateral prostate lobe. In summary, we show for the first time that lycopene reduced local prostatic androgen signaling, IGF-I expression, and basal inflammatory signals in normal prostate tissue. All of these mechanisms can contribute to the epidemiologically observed prostate cancer risk reduction by lycopene.
Ultraviolet light A (UVA) exposure is thought to cause skin aging mainly by singlet oxygen ((1)O(2))-dependent pathways. Using microarrays, we assessed whether pre-treatment with the (1)O(2) quencher beta-carotene (betaC; 1.5 microM) prevents UVA-induced gene regulation in HaCaT human keratinocytes. Downregulation of growth factor signaling, moderate induction of proinflammatory genes, upregulation of immediate early genes including apoptotic regulators and suppression of cell cycle genes were hallmarks of the UVA effect. Of the 568 UVA-regulated genes, betaC reduced the UVA effect for 143, enhanced it for 180, and did not interact with UVA for 245 genes. The different interaction modes imply that betaC/UVA interaction involved multiple mechanisms. In unirradiated keratinocytes, gene regulations suggest that betaC reduced stress signals and extracellular matrix (ECM) degradation, and promoted keratinocyte differentiation. In irradiated cells, expression profiles indicate that betaC inhibited UVA-induced ECM degradation, and enhanced UVA induction of tanning-associated protease-activated receptor 2. Combination of betaC-promoted keratinocyte differentiation with the cellular "UV response" caused synergistic induction of cell cycle arrest and apoptosis. In conclusion, betaC at physiological concentrations interacted with UVA effects in keratinocytes by mechanisms that included, but were not restricted to (1)O(2) quenching. The retinoid effect of betaC was minor, indicating that the betaC effects reported here were predominantly mediated through vitamin A-independent pathways.
We studied the influence of beta-carotene on the tobacco smoke carcinogen 4-(N-Methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumor development in the A/J-mouse model. The normally low beta-carotene absorption was facilitated with a diet enriched in fat and bile salt, resulting in plasma and lung tissue levels similar to humans. beta-Carotene enhanced NNK-induced early bronchial cell proliferation, however, this effect was not predictive for later tumor development. Tumor multiplicity was not significantly affected by beta-carotene, neither in carcinogen-initiated nor in uninitiated mice, and regardless of dose and time point of supplementation during tumor development. RARbeta isoform and CYP26 gene expression levels analyzed by quantitative RT-PCR were weakly, but significantly, inversely correlated and showed evidence for altered retinoid signaling and catabolism in the lungs of NNK-initiated, beta-carotene supplemented mice. However, this interaction did not translate into enhanced tumor multiplicity. These results indicate that impaired retinoid signaling is not likely a key factor in lung tumorigenesis in this mouse model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.