Major advances in the identification of genes implicated in idiopathic epilepsy have been made. Generalized epilepsy with febrile seizures plus (GEFS+), benign familial neonatal convulsions and nocturnal frontal lobe epilepsy, three autosomal dominant idiopathic epilepsies, result from mutations affecting voltage-gated sodium and potassium channels, and nicotinic acetylcholine receptors, respectively. Disruption of GABAergic neurotransmission mediated by gamma-aminobutyric acid (GABA) has been implicated in epilepsy for many decades. We now report a K289M mutation in the GABA(A) receptor gamma2-subunit gene (GABRG2) that segregates in a family with a phenotype closely related to GEFS+ (ref. 8), an autosomal dominant disorder associating febrile seizures and generalized epilepsy previously linked to mutations in sodium channel genes. The K289M mutation affects a highly conserved residue located in the extracellular loop between transmembrane segments M2 and M3. Analysis of the mutated and wild-type alleles in Xenopus laevis oocytes confirmed the predicted effect of the mutation, a decrease in the amplitude of GABA-activated currents. We thus provide the first genetic evidence that a GABA(A) receptor is directly involved in human idiopathic epilepsy.
Gap junctions consist of intercellular channels dedicated to providing a direct pathway for ionic and biochemical communication between contacting cells. After an initial burst of publications describing electrical coupling in the brain, gap junctions progressively became less fashionable among neurobiologists, as the consensus was that this form of synaptic transmission would play a minimal role in shaping neuronal activity in higher vertebrates. Several new findings over the last decade (e.g. the implication of connexins in genetic diseases of the nervous system, in processing sensory information and in synchronizing the activity of neuronal networks) have brought gap junctions back into the spotlight. The appearance of gap junctional coupling in the nervous system is developmentally regulated, restricted to distinct cell types and persists after the establishment of chemical synapses, thus suggesting that this form of cell-cell signaling may be functionally interrelated with, rather than alternative to chemical transmission. This review focuses on gap junctions between neurons and summarizes the available data, derived from molecular, biological, electrophysiological, and genetic approaches, that are contributing to a new appreciation of their role in brain function.
Retinal neurons are coupled via gap junctions, which function as electrical synapses that are gated by ambient light conditions. Gap junctions connecting either horizontal cells or AII amacrine cells are inhibited by the neurotransmitter dopamine, via the activation of the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling pathway. Fish connexin35 (Cx35) and its mouse ortholog, Cx36, are good candidates to undergo dopaminergic modulation, because they have been detected in the inner plexiform layer of the retina, where Type II amacrine cells establish synaptic contacts. We have taken advantage of the ability of certain connexins to form functional connexons (hemi-channels), when expressed in Xenopus oocytes, to investigate whether pharmacological elevation of cAMP modulates voltage-activated hemi-channel currents in single oocytes. Injection of perch Cx35 RNA into Xenopus oocytes induced outward voltage-dependent currents that were recorded at positive membrane potentials. Incubation of oocytes with 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP), a membrane permeable cAMP analog, resulted in a dose-dependent and reversible inhibition of hemi-channel currents at the more positive voltage steps. In contrast, treatment with 8-Br-cAMP did not have any effect on hemi-channel currents induced by skate Cx35. Amino acid sequence comparison of the two fish connexins revealed, in the middle cytoplasmic loop of perch Cx35, the presence of a PKA consensus sequence that was absent in the skate connexin. The results obtained with two constructs in which the putative PKA phosphorylation site was either suppressed (perch Cx35R108Q) or introduced (skate Cx35Q108R) indicate that it is responsible for the inhibition of hemi-channel currents. These studies demonstrate that perch Cx35 is a target of the cAMP/PKA signaling pathway and identify a consensus PKA phosphorylation site that is required for channel gating.
Gap junction-mediated electrical coupling contributes to synchronous oscillatory activities of neurons, and considerable progress has been made in defining the molecular composition of gap junction channels. In particular, cloning and functional expression of gap junction proteins (connexins (Cx)) from zebrafish retina have shown that this part of the brain possesses a high degree of connexin diversity that may account for differential functional properties of electrical synapses. Here, we report the cloning and functional characterization of a new connexin, designated zebrafish Cx52.6 (zfCx52.6). This connexin shows little similarity to known connexins from fish and higher vertebrates. By combining in situ hybridization with Laser Capture Microdissection and RT-PCR, we found that this novel fish connexin is expressed in horizontal cells in the inner nuclear layer of the retina. Functional expression of zfCx52.6 in neuroblastoma cells and Xenopus oocytes led to functional gap junctional channels and, in single oocytes, induced large non-junctional membrane currents indicative of the formation of hemichannels, which were inhibited in reversible fashion by raising extracellular Ca 2؉ concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.