Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.
In the present study a unique dataset on population abundance in various community-based management (CBM) and non-CBM areas is analysed to address the question of whether CBM can recover overexploited populations of Arapaima sp. in river-floodplain ecosystems. All non-CBM areas possessed depleted Arapaima sp. populations with a mean density of 0·01 individuals ha(-1) . Arapaima sp. population densities in all CBM areas changed over time from depleted to overexploited or well managed status, with a mean rate of increase of 77% year(-1) . Rates of Arapaima sp. population recovery in CBM areas differed, probably reflecting differences in ecosystem productivity and compliance with management regulations. These results indicate that CBM schemes can be effective tools for the recovery and conservation of fish populations with non-migratory life cycles in tropical river-floodplain ecosystems.
Rats thrive in human-dominated landscapes and have expanded to a near global distribution. Norway rats (Rattus norvegicus) contaminate food, damage infrastructure, and are reservoirs for zoonotic pathogens that cause human diseases. To limit these negative impacts, entities around the world implement intervention and control strategies designed to quickly and drastically reduce the number of rats in a population. While the primary goal of these interventions is to reduce rat numbers and their detrimental activities, there are important, yet unexplored, population genetic implications for these rapid population declines. Here, we compare the population genetics of R. norvegicus before, immediately after, and several months following a rodenticide-based eradication campaign targeting rats in an urban slum of Salvador, Brazil. This slum has been the focus of long-term research designed to understand and reduce the risk of leptospirosis for people in this area. We also look for a clear source of rats contributing to population recovery, by either rebounding through breeding of local survivors, or by immigration/reinvasion of the site. We found evidence of severe genetic bottlenecks, with the effective population size dropping 85-91% after eradication, consistent with declines in population sizes. These rapid declines also led to a strong shift in the genetic structure of rats before and after the eradication campaign. Relatedness increased in two of the three study areas after eradication, suggesting reduced population sizes and an uneven impact of the campaign across colonies within the population. Lastly, dozens of low-frequency alleles (mean frequency of 0.037) observed before the campaign were undetected after the campaign, potentially lost from the population via drift or selection. We discuss the public health and ecological implications of these rapid genetic impacts of urban control efforts. Our data suggests that targeting the genetic viability of rat populations may be another important component for integrated pest management (IPM) strategies, designed to reduce urban rats.
As the rate of urbanization continues to increase globally, a growing body of research is emerging that investigates how urbanization shapes the movement—and consequent gene flow—of species in cities. Of particular interest are native species that persist in cities, either as small relict populations or as larger populations of synanthropic species that thrive alongside humans in new urban environments. In this study, we used genomic sequence data (SNPs) and spatially explicit individual‐based analyses to directly compare the genetic structure and patterns of gene flow in two small mammals with different dispersal abilities that occupy the same urbanized landscape to evaluate how mobility impacts genetic connectivity. We collected 215 white‐footed mice (Peromyscus leucopus) and 380 big brown bats (Eptesicus fuscus) across an urban‐to‐rural gradient within the Providence, Rhode Island (U.S.A.) metropolitan area (population =1,600,000 people). We found that mice and bats exhibit clear differences in their spatial genetic structure that are consistent with their dispersal abilities, with urbanization having a stronger effect on Peromyscus mice. There were sharp breaks in the genetic structure of mice within the Providence urban core, as well as reduced rates of migration and an increase in inbreeding with more urbanization. In contrast, bats showed very weak genetic structuring across the entire study area, suggesting a near‐panmictic gene pool likely due to the ability to disperse by flight. Genetic diversity remained stable for both species across the study region. Mice also exhibited a stronger reduction in gene flow between island and mainland populations than bats. This study represents one of the first to directly compare multiple species within the same urban‐to‐rural landscape gradient, an important gap to fill for urban ecology and evolution. Moreover, here we document the impacts of dispersal capacity on connectivity for native species that have persisted as the urban landscape matrix expands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.