SummaryThe competition for power in a complex social world is hypothesized to be a driving force in the evolution of intelligence [1]. More specifically, power may be obtained not only by brute force but also by social strategies resembling human politics [2]. Most empirical evidence comes from primate studies that report unprovoked aggression by dominants to maintain power by spreading fear [3] and third-party interventions in conflicts [4–6]. Coalitionary support has also been described in other animals [7, 8] and is often linked to social bonding [9, 10]. As coalitions can lead to a gain in power [5, 11] and fitness benefits [12], individuals may try to prevent coalitionary support or indirectly prevent others from forming social bonds that might lead to coalitions. Although there is some empirical evidence that coalitionary support can be manipulated [13], little is known about the indirect strategy. We show here that wild ravens (Corvus corax) regularly intervene in affiliative interactions of others even though such interventions are potentially risky and without immediate benefits. Moreover, the identities of both interveners and intervened pairs are not randomly distributed. Ravens with existing ties initiate most interventions, and ravens that are creating new ties are most likely to be the targets of interventions. These patterns are consistent with the idea that interventions function to prevent others from forming alliances and consequently becoming future competitors. We thus show previously undescribed social maneuvers in the struggle for power. These maneuvers are likely to be of importance in other social species as well.
Discriminating between different individuals is considered as prerequisite for any forms of social knowledge. In birds, discriminating between conspecifics based on individual characteristics has been tested mainly in the auditory domain with territorial calls and songs for neighbour and kin discrimination but little is known about discriminating between signallers in food calls. Ravens utilize a large set of calls and show individually distinctive call repertoires. Moreover, they show advanced social tactics during foraging, suggesting that they are capable of dealing with conspecifics on an individual basis. When confronted with food that is difficult to access, ravens produce particular calls (‘haa’, yells); these calls attract other ravens and, thus, have been hypothesized to serve as ‘functionally referential signals’. We here examined whether ravens are able to differentiate between individuals on the basis of these food calls. We first analysed individual differences in call parameters, using 424 food calls recorded from 18 individually marked wild ravens in the Austrian Alps. We then tested 18 captive ravens for recognition of individual differences in food calls with playbacks, using a habituation-dishabituation design. We found evidence that food calls show individual call characteristics in fundamental frequency and intensity-related measurements providing ravens with the opportunity to respond according to these individually distinct features. Furthermore, ravens discriminated between unfamiliar ravens in the habituation-dishabituation experiment, indicating that they may discern individual differences. Our results suggest that raven food calls are individually distinct and that the birds may be capable of differentiating between food-calling individuals.
In group-living animals, it is adaptive to recognize conspecifics on the basis of familiarity or group membership as it allows association with preferred social partners and avoidance of competitors. However, animals do not only associate with conspecifics but also with heterospecifics, for example in mixed-species flocks. Consequently, between-species recognition, based either on familiarity or even individual recognition, is likely to be beneficial. The extent to which animals can distinguish between familiar and unfamiliar heterospecifics is currently unclear. In the present study, we investigated the ability of eight carrion crows to differentiate between the voices and calls of familiar and unfamiliar humans and jackdaws. The crows responded significantly more often to unfamiliar than familiar human playbacks and, conversely, responded more to familiar than unfamiliar jackdaw calls. Our results provide the first evidence that birds can discriminate between familiar and unfamiliar heterospecific individuals using auditory stimuli.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.