SummaryThe competition for power in a complex social world is hypothesized to be a driving force in the evolution of intelligence [1]. More specifically, power may be obtained not only by brute force but also by social strategies resembling human politics [2]. Most empirical evidence comes from primate studies that report unprovoked aggression by dominants to maintain power by spreading fear [3] and third-party interventions in conflicts [4–6]. Coalitionary support has also been described in other animals [7, 8] and is often linked to social bonding [9, 10]. As coalitions can lead to a gain in power [5, 11] and fitness benefits [12], individuals may try to prevent coalitionary support or indirectly prevent others from forming social bonds that might lead to coalitions. Although there is some empirical evidence that coalitionary support can be manipulated [13], little is known about the indirect strategy. We show here that wild ravens (Corvus corax) regularly intervene in affiliative interactions of others even though such interventions are potentially risky and without immediate benefits. Moreover, the identities of both interveners and intervened pairs are not randomly distributed. Ravens with existing ties initiate most interventions, and ravens that are creating new ties are most likely to be the targets of interventions. These patterns are consistent with the idea that interventions function to prevent others from forming alliances and consequently becoming future competitors. We thus show previously undescribed social maneuvers in the struggle for power. These maneuvers are likely to be of importance in other social species as well.
Upon discovering food, common ravens, Corvus corax, produce far-reaching ‘haa’ calls or yells, which are individually distinct and signal food availability to conspecifics. Here, we investigated whether ravens respond differently to ‘haa’ calls of known and unknown individuals. In a paired playback design, we tested responses to ‘haa’ call sequences in a group containing individually marked free-ranging ravens. We simultaneously played call sequences of a male and a female raven in two different locations and varied familiarity (known or unknown to the local group). Ravens responded strongest to dyads containing familiar females, performing more scan flights above and by perching in trees near the respective speaker. Acoustic analysis of the calls used as stimuli showed no sex-, age- or familiarity-specific acoustic cues, but highly significant classification results at the individual level. Taken together, our findings indicate that ravens respond to individual characteristics in ‘haa’ calls, and choose whom to approach for feeding, i.e. join social allies and avoid dominant conspecifics. This is the first study to investigate responses to ‘haa’ calls under natural conditions in a wild population containing individually marked ravens.
BackgroundAcoustic properties of vocalizations can vary with the internal state of the caller, and may serve as reliable indicators for a caller’s emotional state, for example to prevent conflicts. Thus, individuals may associate distinct characteristics in acoustic signals of conspecifics with specific social contexts, and adjust their behaviour accordingly to prevent escalation of conflicts. Common ravens (Corvus corax) crowd-forage with individuals of different age classes, sex, and rank, assemble at feeding sites, and engage in agonistic interactions of varying intensity. Attacked individuals frequently utter defensive calls in order to appease the aggressor. Here, we investigated if acoustic properties of defensive calls change with varying levels of aggression, and if bystanders respond to these changes.ResultsIndividuals were more likely to utter defensive calls when the attack involved contact aggression, and when the attacker was higher in rank than the victim. Defensive calls produced during intense conflicts were longer and uttered at higher rates, and showed higher fundamental frequency- and amplitude-related measures than calls uttered during low-intensity aggression, indicating arousal-based changes in defensive calls. Playback experiments showed that ravens were more likely to react in response to defensive calls with higher fundamental frequency by orientating towards the speakers as compared to original calls and calls manipulated in duration.ConclusionsArousal-based changes are encoded in acoustic parameters of defensive calls in attacked ravens, and bystanders in the audience pay attention to the degree of arousal in attacked conspecifics. Our findings imply that common ravens can regulate conflicts with conspecifics by means of vocalizations, and are able to gather social knowledge from conspecific calls.Electronic supplementary materialThe online version of this article (10.1186/s12983-017-0244-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.