Adaptation to a changing climate is critical to address future global food and water security challenges. While these challenges are global, successful adaptation strategies are often generated at regional scales; therefore, regional‐scale studies are critical to inform adaptation decision making. While climate change affects both water supply and demand, water demand is relatively understudied, especially at regional scales. The goal of this work is to address this gap, and characterize the direct impacts of near‐term (for the 2030s) climate change and elevated CO2 levels on regional‐scale crop yields and irrigation demands for the Columbia River basin (CRB). This question is addressed through a coupled crop‐hydrology model that accounts for site‐specific and crop‐specific characteristics that control regional‐scale response to climate change. The overall near‐term outlook for agricultural production in the CRB is largely positive, with yield increases for most crops and small overall increases in irrigation demand. However, there are crop‐specific and location‐specific negative impacts as well, and the aggregate regional response of irrigation demands to climate change is highly sensitive to the spatial crop mix. Low‐value pasture/hay varieties of crops—typically not considered in climate change assessments—play a significant role in determining the regional response of irrigation demands to climate change, and thus cannot be overlooked. While, the overall near‐term outlook for agriculture in the region is largely positive, there may be potential for a negative outlook further into the future, and it is important to consider this in long‐term planning.
As managers of agricultural and natural resources are confronted with uncertainties in global change impacts, the complexities associated with the interconnected cycling of nitrogen, carbon, and water present daunting management challenges. Existing models provide detailed information on specific sub-systems (e.g., land, air, water, and economics). An increasing awareness of the unintended consequences of management decisions resulting from interconnectedness of these sub-systems, however, necessitates coupled regional earth system models (EaSMs). Decision makers' needs and priorities can be integrated into the model design and development processes to enhance decision-making relevance and "usability" of EaSMs. BioEarth is a research initiative currently under development with a focus on the U.S. Pacific Northwest region that explores the coupling of multiple stand-alone EaSMs to generate usable information for resource decision-making. Direct engagement between model developers and non-academic stakeholders involved in resource and environmental management decisions throughout the model development process is a critical component of this effort. BioEarth utilizes a bottom-up approach for its land surface model that preserves fine spatialscale sensitivities and lateral hydrologic connectivity, which makes it unique among many regional EaSMs. This paper describes the BioEarth initiative and highlights opportunities and challenges associated with coupling multiple stand-alone models to generate usable information for agricultural and natural resource decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.