Whether response to combination antiretroviral therapy (cART) differs between those infected with HIV-1 subtype A or B remains unclear. We compared virological and immunological response to cART in individuals infected with subtype A or B in an ethnically homogeneous population. Data derived from the Athens Multicenter AIDS Cohort Study (AMACS) and analysis were restricted to those of Greek origin. Time to virological response (confirmed HIV-RNA <500 copies/ml) and time to failure (>500 copies/ml at any time or no response by month 6) were analyzed using survival models and CD4 changes after cART initiation using piecewise linear mixed effects models. Of the 571 subjects included in the analysis, 412 (72.2%) were infected with subtype B and 159 (27.8%) with subtype A. After adjusting for various prognostic factors, the rate of virological response was higher for those infected with subtype A versus B (adjusted HR: 1.35; 95% CI: 1.08-1.68; p=0.009). Subtype A was also marginally associated with a lower hazard of virological failure compared to subtype B (HR=0.73; 95% CI: 0.53-1.02; p=0.062). Further adjustment for treatment adherence did not substantially changed the main results. No significant differences were observed in the rates of CD4 increases by subtype. The overall median (95% CI) CD4 increase at 2 years of cART was 193 (175, 212) cells/μl. Our study, based on one of the largest homogeneous groups of subtype A and B infections in Europe, showed that individuals infected with subtype A had an improved virological but similar immunological response to cART compared to those infected with subtype B.
This is the first case of human herpes virus-6-related bilateral posterior uveitis in a human immunodeficiency virus-positive individual without clinical manifestations of AIDS.
Good product recyclability is a prerequisite for the transition to a circular economy.However, today's product complexity and diversity in the urban mine result in heterogeneous and variable waste flows affecting process recycling efficiency (RE) and thus product recyclability. For batteries, waste flow composition and subsequent RE are determined by usage behavior, collection, and sorting into chemical battery subsystems. This study aims to demonstrate how extended batch tests (EBTs) can be used as a method to (a) determine battery-specific RE and (b) derive recommendations for assessing and improving the recyclability of batteries. Three EBTs comprising extensive characterization methods were carried out with mixtures of zinc-based (AZ) and lithium-based (LIB) batteries. The results showed that 0.20-0.27 kg/kg of the input mass was lost through flue gas and not recyclable. The metal fraction (0.15-0.19 kg/kg) was easily recyclable, while the mineral fractions of LIBs posed challenges for recycling and recovery (RR) due to the high elemental heterogeneity and pollutants originating from individual battery subsystems. In total, 0.79 kg/kg of AZs was recyclable, whereas 0.52 kg/kg of LIBs and 0.58 kg/kg of AZLIBs (a mixture of both) were recyclable after further treatment. In conclusion, the study demonstrated how the EBT approach can be used to extend recyclability assessment by providing waste flow characteristics for comparison with output quality requirements, enabling assignment of battery-specific RE and identification of poorly recyclable battery subsystems. Thus, the EBT approach can help improve and assess technical recyclability in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.