This paper presents how a course for many-core programming is taught at Abo Akademi University. A motivation for this course is first presented before the learning outcomes for the students and the structure of the course are overviewed. The main content of the course, the project work for the parallelization of an application and the requirements for this project work is then presented in more detail. Finally, feedback from the students is provided.
Heterogeneous architectures offer the opportunity to achieve high performance and energy efficiency by selecting appropriate cores for the execution of ever-changing software applications. Appropriate core selection depends on the interaction between the structural properties of the software and the hardware that influences the performance of the software. We propose a model for efficient core selection when executing software on ARM's big.LITTLE heterogeneous architecture. It features a metric based on the correlation between the performance and the number of last-level data cache (LLC) misses on a big and a LITTLE core. Additionally, our model defines a soft threshold in terms of the number of LLC misses, which determines efficient core selection. We verify the model using stress and variable workload benchmarks as well as two popular high-throughput applications for mutlicore targets, namely, HEVC and LDPC decoders, profiled with X-Mem, Linux perf, and PMCTrack dynamic tools. Results show that our model can be used for efficient core selection with a relatively small error probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.