Construction industry has a major impact on the environment that we spend most of our life. Therefore, it is important that the outcome of architectural intuition performs well and complies with the design requirements. Architects usually describe as “optimal design” their choice among a rather limited set of design alternatives, dictated by their experience and intuition. However, modern design of structures requires accounting for a great number of criteria derived from multiple disciplines, often of conflicting nature. Such criteria derived from structural engineering, eco-design, bioclimatic and acoustic performance. The resulting vast number of alternatives enhances the need for computer-aided architecture in order to increase the possibility of arriving at a more preferable solution. Therefore, the incorporation of smart, automatic tools in the design process, able to further guide designer’s intuition becomes even more indispensable. The principal aim of this study is to present possibilities to integrate automatic computational techniques related to topology optimization in the phase of intuition of civil structures as part of computer aided architectural design. In this direction, different aspects of a new computer aided architectural era related to the interpretation of the optimized designs, difficulties resulted from the increased computational effort and 3D printing capabilities are covered here in.
SAP2000 is a well-known commercial software for analysis and design of structural systems that is equipped with an open application programming interface (OAPI). A code written in C# to solve three-dimensional topology optimization problems is presented in this work, where taking advantage of the OAPI feature, a topology optimization framework was integrated into SAP2000. The code is partially based on the 99 and 88 line codes written by Sigmund and co
Structural optimization over the past decades matured from an academic theoretical field, to an important tool in the design procedure in various engineering disciplines. Some commercial software applications provide some suites with optimization solutions, but they are focused mostly in the aeronautics, automotive and aerospace industry. High Performance Optimization Computing Platform (HP-OCP) is a software developed by the ISAAR-NTUA and provides a holistic optimization approach for civil engineering structures. More precisely, HP-OCP is a computational suite that has the ability to integrate with several structural analysis and design software and provide optimization solutions. Structural optimization is mainly divided in three groups, sizing (or parametric), shape and topology optimization. All of them are integrated in HP-OCP and the appropriate algorithms are provided in each category. Considering size and shape optimization, the parametric optimization module is developed, in which the design variables of the mathematical formulation can be the dimension of the section properties, the quality of the material, the coordinates of the nodes etc. In this module plenty of derivativebased and derivative-free algorithms are provided like the Projected Quasi-Newton, Constrained Optimization by Linear Approximation, Latin Hypercube Sampling etc. [1]. Considering the topology optimization module [2], the SIMP method is applied and the mathematical algorithms that are implemented are the Optimality Criteria and Method of Moving Asymptotes. HP-OCP was developed in C# programming language, making it a powerful suite that can be integrated with any commercial software that provide Application Programming Interface, batch analysis via XML files or any other type of data exchange format. In the current work the integration of HP-OCP with the SAP2000, ETABS and SCIA Engineering software is presented. Several examples considering parametric and topology optimization problems are examined. Remarkable cost reduction is succeeded in real-world structures, validating in this way the usefulness of HP-OCP not only in the research field but also in applied civil engineering problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.