Formation and stability of derivatives among metabolites differ greatly, so derivatization should be studied before application in metabolomics studies.
Intrauterine growth restriction (IUGR) is a fetal adverse condition, ascribed by limited oxygen and nutrient supply from the mother to the fetus. Management of IUGR is an ongoing challenge because of its connection with increased fetal mortality, preterm delivery and postnatal pathologies. Untargeted nuclear magnetic resonance (1H NMR) metabolomics was applied in 84 umbilical cord blood and maternal blood samples obtained from 48 IUGR and 36 appropriate for gestational age (AGA) deliveries. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) followed by pathway and enrichment analysis generated classification models and revealed significant metabolites that were associated with altered pathways. A clear association between maternal and cord blood altered metabolomic profile was evidenced in IUGR pregnancies. Increased levels of the amino acids alanine, leucine, valine, isoleucine and phenylalanine were prominent in IUGR pregnancies indicating a connection with impaired amino acid metabolism and transplacental flux. Tryptophan was individually connected with cord blood discrimination while 3-hydroxybutyrate assisted only maternal blood discrimination. Lower glycerol levels in IUGR samples ascribed to imbalance between gluconeogenesis and glycolysis pathways, suggesting poor glycolysis. The elevated levels of branched chain amino acids (leucine, isoleucine and valine) in intrauterine growth restricted pregnancies were linked with increased insulin resistance.
Aberrant angiogenesis is a hallmark for cancer and inflammation, a key notion in drug repurposing efforts. To delineate the anti-angiogenic properties of amifostine in a human adult angiogenesis model via 3D cell metabolomics and upon a stimulant-specific manner, a 3D cellular angiogenesis assay that recapitulates cell physiology and drug action was coupled to untargeted metabolomics by liquid chromatography–mass spectrometry and nuclear magnetic resonance spectroscopy. The early events of angiogenesis upon its most prominent stimulants (vascular endothelial growth factor-A or deferoxamine) were addressed by cell sprouting measurements. Data analyses consisted of a series of supervised and unsupervised methods as well as univariate and multivariate approaches to shed light on mechanism-specific inhibitory profiles. The 3D untargeted cell metabolomes were found to grasp the early events of angiogenesis. Evident of an initial and sharp response, the metabolites identified primarily span amino acids, sphingolipids, and nucleotides. Profiles were pathway or stimulant specific. The amifostine inhibition profile was rather similar to that of sunitinib, yet distinct, considering that the latter is a kinase inhibitor. Amifostine inhibited both. The 3D cell metabolomics shed light on the anti-angiogenic effects of amifostine against VEGF-A- and deferoxamine-induced angiogenesis. Amifostine may serve as a dual radioprotective and anti-angiogenic agent in radiotherapy patients.
Normal levels of thyroid hormones (THs) are essential for a normal pregnancy outcome, fetal growth and the normal function of the central nervous system. Hypothyroidism, a common endocrine disorder during pregnancy, is a significant metabolic factor leading to cognitive impairments. It is essential to investigate whether patients with thyroid dysfunction may present an altered circulative and excreted metabolic profile, even after receiving treatment with thyroxine supplements. NMR metabolomics was employed to analyze 90 serum and corresponding colostrum samples. Parallel analyses of the two biological specimens provided a snapshot of the maternal metabolism through the excretive and circulating characteristics of mothers. The metabolomics data were analyzed by performing multivariate statistical, biomarker and pathway analyses. Our results highlight the impact of hypothyroidism on metabolites’ composition during pregnancy and lactation. Thyroid disorder causing metabolite fluctuations may lead to impaired lipid and glucose metabolic pathways as well as aberrant prenatal neurodevelopment, thus posing a background for the occurrence of metabolic syndrome or neurogenerative diseases later in life. This risk applies to not only untreated but also hypothyroid women under replacement therapy since our findings in both biofluids framed a different metabolic phenotype for the latter group, thus emphasizing the need to monitor women adequately after treatment initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.