In contrast to sympathetic and sensory neurons in the peripheral nervous system, the neurotrophic requirements for neurons in the central nervous system (CNS) have not been clearly identified. The inactivation of specific neurotrophic factors and their receptors by gene targeting has shown that there are no major changes in neuron numbers in the CNS. This suggests an overlap between the action of different neurotrophic factors in the brain during development. Here we have studied the survival of hippocampal neurons prepared from embryonic rats using different culture conditions. Whereas the hippocampal neurons survive well in culture when plated at high density, they die at lower cell densities in the absence of appropriate neurotrophic factors. Under the latter conditions, both insulin-like growth factor-1 (IGF-1) and neurotrophins - brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) - rescued a large proportion of cultured neurons. In addition, hippocampal neurons from BDNF knockout mice exhibited enhanced cell death compared with cells from wild-type animals. BDNF and IGF-1 both increased the survival of the hippocampal neurons lacking BDNF, showing complementary action for these factors in supporting survival. Blocking antibodies against NT-3 and IGF-1 decreased hippocampal neuron survival at low cell densities, showing autocrine or paracrine action of the factors. At higher cell densities, however, the antibodies had no effect, demonstrating that there is a sufficient amount of endogenous factors in supporting survival. Blocking antibodies against NT-3 and IGF-1 decreased hippocampal neurons depend for survival on local neurotrophic factors such as IGF-1, BDNF and NT-3, which act in an autocrine/paracrine manner. The multifactorial support of hippocampal neurons ensures a maximal degree of neuron survival even in the absence of an individual factor
We have isolated a series of human liver cDNA clones encoding glutamate dehydrogenase. The cDNAderived protein sequence specifies a single 558-amino acid long polypeptide including a cleavable signal sequence of 53 amino acids. Blotting analysis of RNA from human, monkey, and rabbit showed that glutamate dehydrogenase mRNA is present in various amounts in all tissues tested. Glutamate dehydrogenase mRNAs are of four sizes and are found in different ratios in different tissues; the predominant ones are ".3.5 and =2.9 kilobases. Blot hybridization of human genomic DNA to nonoverlapping cDNA fragments revealed multiple bands, many of which hybridize with two or more probes in a manner inconsistent with the existence of a single GLUD gene. Moreover, two separate 36-base synthetic oligonucleotides corresponding to the coding region hybridize to multiple genomic fragments, confirming the existence of more than one GLUDrelated gene in human.
Oral cancer refers to all malignancies that arise in the oral cavity, lips and pharynx, with 90% of all oral cancers being oral squamous cell carcinoma. Despite the recent treatment advances, oral cancer is reported as having one of the highest mortality ratios amongst other malignancies and this can much be attributed to the late diagnosis of the disease. Saliva has long been tested as a valuable tool for drug monitoring and the diagnosis systemic diseases among which oral cancer. The new emerging technologies in molecular biology have enabled the discovery of new molecular markers (DNA, RNA and protein markers) for oral cancer diagnosis and surveillance which are discussed in the current review.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.