The extremely precise extraction of the proton radius by Pohl et al. from the measured energy difference between the 2P and 2S states of muonic hydrogen disagrees significantly with that extracted from electronic hydrogen or elastic electron-proton scattering. This is the proton radius puzzle. The origins of the puzzle and the reasons for believing it to be very significant are explained. Various possible solutions of the puzzle are identified, and future work needed to resolve the puzzle is discussed.
A model-independent analysis of the infinite-momentum-frame charge density of partons in the transverse plane is presented for the nucleon. We find that the neutron parton charge density is negative at the center, so that the square of the transverse charge radius is positive, in contrast with many expectations. Additionally, the proton's central u quark charge density is larger than that of the d quark by about 70%. The proton (neutron) charge density has a long range positively (negatively) charged component.
This article reviews our current understanding of how the internal quark structure of a nucleon bound in nuclei differs from that of a free nucleon. We focus on the interpretation of measurements of the EMC effect for valence quarks, a reduction in the Deep Inelastic Scattering (DIS) cross-section ratios for nuclei relative to deuterium, and its possible connection to nucleon-nucleon Short-Range Correlations (SRC) in nuclei. Our review and new analysis (involving the amplitudes of non-nucleonic configurations in the nucleus) of the available experimental and theoretical evidence shows that there is a phenomenological relation between the EMC effect and the effects of SRC that is not an accident. The influence of strongly correlated neutron-proton pairs involving highly virtual nucleons is responsible for both effects. These correlated pairs are temporary high-density fluctuations in the nucleus in which the internal structure of the nucleons is briefly modified. This conclusion needs to be solidified by the future experiments and improved theoretical analyses that are discussed herein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.