Super-resolution imaging based on single-molecule localization microscopy combined with the surface plasmon polariton (SPP)-enhanced fluorescence of spontaneously blinking fluorophores was demonstrated to visualize the nanoscale-level positioning information of cell-adhesion-associated proteins. Glass substrates with a deposited silver layer were utilized to induce a SPP-enhanced field on the silver surface and significantly strengthen the fluorescence signals of the fluorophores by more than 300%. The illumination power density for localization imaging at a spatial resolution of 25 ± 11 nm was 31.6 W cm-2. This low illumination power density will facilitate the reduction of phototoxicity of the biospecimens for single-molecule localization imaging. The proposed strategy provides a uniform distribution of the SPP-enhanced field on the silver surface, enabling visualization of the spatial distribution of labeled proteins without interference caused by the enhanced field distribution.
Surface plasmon-coupled emission (SPCE) substrates to enhance the blinking fluorescence of spontaneously blinking fluorophores in single-molecule localization microscopy (SMLM) were fabricated to reduce the excitation power density requirement and reveal the distribution of fluorophore-labeled proteins on a plasma membrane with nanoscale-level resolution. The systemic investigation of the contribution of local field enhancement, modified quantum yield, and emission coupling yield through glass coverslip substrates coated with metal layers of different thicknesses revealed that the silver-layer substrate with a thickness of 44 nm produces the highest SPCE fluorescence in spontaneously blinking fluorophores, and it has a highly directional SPCE fluorescence, which helps improve the detection efficiency. Moreover, the uniform and surface-enhanced field created on the substrate surface is beneficial for fluorescence background reduction in single fluorophore detection and localization, as well as for revealing the real position of fluorophores. Consequently, compared with a glass coverslip substrate, the presented SPCE substrate demonstrated a fluorescence enhancement of 480% and an increase in blinking events from a single spontaneously blinking fluorophore; moreover, the required excitation power density for SMLM imaging was significantly reduced to 23 W cm −2 for visualizing the distribution of epidermal growth factor receptors (EGFRs) on the basal plasma membrane of A549 lung cancer cells with a localization precision of 19 ± 7 nm. Finally, the fluorophore-labeled EGFRs on the basal plasma membrane in the presence of PIKfyve-specific inhibitor treatment were explored using SPCE−SMLM imaging; the results revealed a distinct reduction in the density of localization events because of a decrease in EGFR abundance at the plasma membranes of the cells.
Wavelength tunable temporal focusing multiphoton excitation microscopy (TFMPEM) is conducted to visualize optical sectioning images of multiple fluorophore–labeled specimens through the optimal two-photon excitation (TPE) of each type of fluorophore. The tunable range of excitation wavelength was determined by the groove density of the grating, the diffraction angle, the focal length of lenses, and the shifting distance of the first lens in the beam expander. Based on a consideration of the trade-off between the tunable-wavelength range and axial resolution of temporal focusing multiphoton excitation imaging, the presented system demonstrated a tunable-wavelength range from 770 to 920 nm using a diffraction grating with groove density of 830 ?? lines / mm . TPE fluorescence imaging examination of a fluorescent thin film indicated that the width of the axial confined excitation was 3.0 ± 0.7 ?? ? m and the shifting distance of the temporal focal plane was less than 0.95 ?? ? m within the presented wavelength tunable range. Fast different wavelength excitation and three-dimensionally rendered imaging of Hela cell mitochondria and cytoskeletons and mouse muscle fibers were demonstrated. Significantly, the proposed system can improve the quality of two-color TFMPEM images through different excitation wavelengths to obtain higher-quality fluorescent signals in multiple-fluorophore measurements.
Synaptosomes are subcellular fractions prepared from brain tissues that are enriched in synaptic terminals, widely used for the study of neural transmission and synaptic dysfunction. Immunofluorescence imaging is increasingly applied to synaptosomes to investigate protein localization. However, conventional methods for imaging synaptosomes over glass coverslips suffer from formaldehyde-induced aggregation. Here, we developed a facile strategy to capture and image synaptosomes without aggregation artefacts. First, ethylene glycol bis(succinimidyl succinate) (EGS) is chosen as the chemical fixative to replace formaldehyde. EGS/glycine treatment makes the zeta potential of synaptosomes more negative. Second, we modified glass coverslips with 3-aminopropyltriethoxysilane (APTES) to impart positive charges. EGS-fixed synaptosomes spontaneously attach to modified glasses via electrostatic attraction while maintaining good dispersion. Individual synaptic terminals are imaged by conventional fluorescence microscopy or by super-resolution techniques such as direct stochastic optical reconstruction microscopy (dSTORM). We examined tau protein by two-color and three-color dSTORM to understand its spatial distribution within mouse cortical synapses, observing tau colocalization with synaptic vesicles as well postsynaptic densities.
Synaptosomes are subcellular fractions prepared from brain tissues that are enriched in synaptic terminals, widely used for the study of neural transmission and synaptic dysfunction. Immunofluorescence imaging is increasingly applied to synaptosomes to investigate protein localization. However, conventional methods for imaging synaptosomes over glass coverslips suffer from formaldehyde-induced aggregation. Here, we developed a simple and facile strategy to capture and image synaptosomes without aggregation artefacts. First, ethylene glycol bis(succinimidyl succinate) (EGS) is chosen as the chemical fixative to replace formaldehyde. EGS/glycine treatment makes the zeta potential of synaptosomes more negative. Second, we modified glass coverslips with 3-aminopropyltriethoxysilane (APTES) to impart positive charges. EGS-fixed synaptosomes spontaneously attach to modified glasses via electrostatic attraction while maintaining good dispersion. Individual synaptic terminals are imaged by conventional fluorescence microscopy or by super-resolution techniques such as direct stochastic optical reconstruction microscopy (dSTORM). We examined tau protein by two-color and three-color dSTORM to understand its spatial distribution within mouse cortical synapses, observing tau colocalization with synaptic vesicles as well postsynaptic densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.