Biomphalaria snails are instrumental in transmission of the human blood fluke Schistosoma mansoni. With the World Health Organization's goal to eliminate schistosomiasis as a global health problem by 2025, there is now renewed emphasis on snail control. Here, we characterize the genome of Biomphalaria glabrata, a lophotrochozoan protostome, and provide timely and important information on snail biology. We describe aspects of phero-perception, stress responses, immune function and regulation of gene expression that support the persistence of B. glabrata in the field and may define this species as a suitable snail host for S. mansoni. We identify several potential targets for developing novel control measures aimed at reducing snail-mediated transmission of schistosomiasis.
BackgroundThe near exclusive use of praziquantel (PZQ) for treatment of human schistosomiasis has raised concerns about the possible emergence of drug-resistant schistosomes.Methodology/Principal FindingsWe measured susceptibility to PZQ of isolates of Schistosoma mansoni obtained from patients from Kisumu, Kenya continuously exposed to infection as a consequence of their occupations as car washers or sand harvesters. We used a) an in vitro assay with miracidia, b) an in vivo assay targeting adult worms in mice and c) an in vitro assay targeting adult schistosomes perfused from mice. In the miracidia assay, in which miracidia from human patients were exposed to PZQ in vitro, reduced susceptibility was associated with previous treatment of the patient with PZQ. One isolate (“KCW”) that was less susceptible to PZQ and had been derived from a patient who had never fully cured despite multiple treatments was studied further. In an in vivo assay of adult worms, the KCW isolate was significantly less susceptible to PZQ than two other isolates from natural infections in Kenya and two lab-reared strains of S. mansoni. The in vitro adult assay, based on measuring length changes of adults following exposure to and recovery from PZQ, confirmed that the KCW isolate was less susceptible to PZQ than the other isolates tested. A sub-isolate of KCW maintained separately and tested after three years was susceptible to PZQ, indicative that the trait of reduced sensitivity could be lost if selection was not maintained.Conclusions/SignificanceIsolates of S. mansoni from some patients in Kisumu have lower susceptibility to PZQ, including one from a patient who was never fully cured after repeated rounds of treatment administered over several years. As use of PZQ continues, continued selection for worms with diminished susceptibility is possible, and the probability of emergence of resistance will increase as large reservoirs of untreated worms diminish. The potential for rapid emergence of resistance should be an important consideration of treatment programs.
The wide geographic distribution of Schistosoma mansoni, a digenetic trematode and parasite of humans, is determined by the occurrence of its intermediate hosts, freshwater snails of the genus Biomphalaria (Preston 1910). We present phylogenetic analyses of 23 species of Biomphalaria, 16 Neotropical and seven African, including the most important schistosome hosts, using partial mitochondrial ribosomal 16S and complete nuclear ribosomal ITS1 and ITS2 nucleotide sequences. A dramatically better resolution was obtained by combining the data sets as opposed to analyzing each separately, indicating that there is additive congruent signal in each data set. Neotropical species are basal, and all African species are derived, suggesting an American origin for the genus. We confirm that a proto-Biomphalaria glabrata gave rise to all African species through a trans-Atlantic colonization of Africa. In addition, genetic distances among African species are smaller compared with those among Neotropical species, indicating a more recent origin. There are two species-rich clades, one African with B. glabrata as its base, and the other Neotropical. Within the African clade, a wide-ranging tropical savannah species, B. pfeifferi, and a Nilotic species complex, have both colonized Rift Valley lakes and produced endemic lacustrine forms. Within the Neotropical clade, two newly acquired natural hosts for S. mansoni (B. straminea and B. tenagophila) are not the closest relatives of each other, suggesting two separate acquisition events. Basal to these two species-rich clades are several Neotropical lineages with large genetic distances between them, indicating multiple lineages within the genus. Interesting patterns occur regarding schistosome susceptibility: (1) the most susceptible hosts belong to a single clade, comprising B. glabrata and the African species, (2) several susceptible Neotropical species are sister groups to apparently refractory species, and (3) some basal lineages are susceptible. These patterns suggest the existence of both inherent susceptibility and resistance, but also underscore the ability of S. mansoni to adapt to and acquire previously unsusceptible species as hosts. Biomphalaria schrammi appears to be distantly related to other Biomphalaria as well as to Helisoma, and may represent a separate or intermediate lineage.
Schistosoma mansoni is the most widespread of the human-infecting schistosomes, present in 54 countries, predominantly in Africa, but also in Madagascar, the Arabian Peninsula, and the Neotropics. Adult-stage parasites that infect humans are also occasionally recovered from baboons, rodents, and other mammals. Larval stages of the parasite are dependent upon certain species of freshwater snails in the genus Biomphalaria, which largely determine the parasite's geographical range. How S. mansoni genetic diversity is distributed geographically and among isolates using different hosts has never been examined with DNA sequence data. Here we describe the global phylogeography of S. mansoni using more than 2500 bp of mitochondrial DNA (mtDNA) from 143 parasites collected in 53 geographically widespread localities. Considerable within-species mtDNA diversity was found, with 85 unique haplotypes grouping into five distinct lineages. Geographical separation, and not host use, appears to be the most important factor in the diversification of the parasite. East African specimens showed a remarkable amount of variation, comprising three clades and basal members of a fourth, strongly suggesting an East African origin for the parasite 0.30-0.43 million years ago, a time frame that follows the arrival of its snail host. Less but still substantial variation was found in the rest of Africa. A recent colonization of the New World is supported by finding only seven closely related New World haplotypes which have West African affinities. All Brazilian isolates have nearly identical mtDNA haplotypes, suggesting a founder effect from the establishment and spread of the parasite in this large country.
Revealing diversity among extant blood flukes, and the patterns of relationships among them, has been hindered by the difficulty of determining if specimens described from different life cycle stages, hosts, geographic localities, and times represent the same or different species. Persistent collection of all available life cycle stages and provision of exact collection localities, host identification, reference DNA sequences for the parasite, and voucher specimens eventually will provide the framework needed to piece together individual life cycles and facilitate reconciliation with classical taxonomic descriptions, including those based on single life cycle stages. It also provides a means to document unique or rare species that might only ever be recovered from a single life cycle stage. With an emphasis on the value of new information from field collections of any available life cycle stages, here we provide data for several blood fluke cercariae from freshwater snails from Kenya, Uganda, and Australia. Similar data are provided for adult worms of Macrobilharzia macrobilharzia and miracidia of Bivitellobilharzia nairi. Some schistosome and sanguinicolid cercariae that we recovered have peculiar morphological features, and our phylogenetic analyses (18S and 28S rDNA and mtDNA CO1) suggest that 2 of the new schistosome specimens likely represent previously unknown lineages. Our results also provide new insights into 2 of the 4 remaining schistosome genera yet to be extensively characterized with respect to their position in molecular phylogenies, Macrobilharzia and Bivitellobilharzia. The accessibility of each life cycle stage is likely to vary dramatically from one parasite species to the next, and our examples validate the potential usefulness of information gleaned from even one such stage, whatever it might be.The Schistosomatidae is one of the best known of parasite families, yet even within this group much remains to be learned about global species diversity, biogeography, patterns of vertebrate and snail host usage, and evolutionary relationships. Our knowledge of schistosome origins and diversification also will be improved by better understanding the diversity inherent in closely-related digenean families, including the 2 other families of blood flukes (the Spirorchiidae of turtles and the Sanguinicolidae of fishes), and the Clinostomidae. Blood fluke systematics, particularly of schistosomes, has received considerable attention in the last several years (e.g., Carmichael, 1984;Rollinson et al., 1997;Snyder and Loker, 2000;Attwood et al., 2002;Lockyer et al., 2003;Morgan et al., 2003; Agatsuma et al., 2004). These studies have examined morphology, DNA sequence diversity, and patterns of host use. The molecular studies, in particular, have yielded intriguing new hypotheses that delineate the broad patterns of relationships within the family and have provided an invaluable framework to examine overall schistosome and blood fluke diversity.One of the long-standing impediments to assessing diversi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.