After decades of research involving numerous epidemiologic studies and extensive investigations in laboratory animals, a causal relationship between diesel exhaust (DE) exposure and lung cancer has not been conclusively demonstrated. Epidemiologic studies of the transportation industry (trucking, busing, and railroad) show a small elevation in lung cancer incidence (relative risks [RRs] generally below 1.5), but a dose response for DE is lacking. The studies are also limited by a lack of quantitative concurrent exposure data and inadequate or lack of controls for potential confounders, particularly tobacco smoking. Furthermore, prior to dieselization, similar elevations in lung cancer incidence have been reported for truck drivers, and in-cab diesel particulate matter (DPM) exposures of truck drivers were comparable to ambient highway exposures. Taken together, these findings suggest that an unidentified occupational agent or lifestyle factor might be responsible for the low elevations in lung cancer reported in the transportation studies. In contrast, underground miners, many of whom experience the highest occupational DPM exposures, generally do not show elevations in lung cancer. Laboratory studies must be interpreted with caution with respect to predicting the carcinogenic potential of DE in humans. Tumors observed in rats following lifetime chronic inhalation of very high levels of DPM may be attributed to species-specific overload mechanisms that lack relevance to humans. Increased tumor incidence was not observed in other species (hamsters or mice) exposed to DPM at very high levels or in rats exposed at lower levels (=2000 mug/m3). Although DPM contains mutagens, mutagenicity studies in which cells were exposed to concentrated extracts of DPM also have limited application to human risk assessment, because such extracts can be obtained from DPM only by using strong organic solvents, agitation, and heat. Most studies have shown that whole DPM itself is not mutagenic because the adsorbed organic compounds are minimally bioavailable in aqueous-based fluids. In the past two decades, dramatic changes in diesel engine technology (e.g., low-sulfur fuel and exhaust after-treatment) have resulted in >99% reduction in DPM and other quantitative and qualitative changes in the chemical and physical characteristics of diesel exhaust. Thus, the current database, which is focused almost entirely on the potential health effects of traditional diesel exhaust (TDE), has only limited utility in assessing the potential health risks of new-technology diesel exhaust (NTDE). To overcome some of the limitations of the historical epidemiologic database on TDE and to gain further insights into the potential health effects of NTDE, new studies are underway and more studies are planned.
All health care personnel, especially those in the rehabilitation field, are quite familiar with the frustrations that ischemic skin ulcers engender, particularly decubiti. When preventive measures prove unsuccessful, one is faced with the problem of enhancing tissue repair of the resultant lesion. A satisfactory method for the treatment of these lesions has eluded physicians for centuries, and the variety of therapeutic techniques is exceeded only by the number of resistant ulcers.Ischemic ulcers are, by definition, areas of chronic dermal and epidermal erosion in which local hypoxia plays a major role. Aggravating factors include a multitude of pathophysiologic processes; however, most of these ulcers are sequelae of chronic venous stasis with lower extremity varicosities, peripheral arterial insufficiency, or destructive forces that act on decentralized, denervated, or even normally innervated tissue.In the past, these lesions have responded most consistently to avoidance of pressure, cleanliness, and patience. A welcome break in this routine was described by Kanof' who reported the accelerating effect of ordinary gold leaf upon the healing of decubitus ulcers. Although the study was of limited scope, in terms of ulcer type and number of patients, the inherent potential of this unique regimen seemed to warrant further evaluation and investigation.Our evaluation of the gold leaf treatment* indicated a significant acceleration in healing rate. Of particular interest was the electrometric evidence that dissipation of the negative charge from the leaf was complete in about 48 hr and also that infected ulcers were aggravated by the negatively charged gold foil. It was hypothesized that the external application of a negatively charged substance (e.g., gold leaf) forms a dipole configuration with the adjacent tissue, whose polarity thereby becomes relatively more positive and catalyzes anabolism.Armed with this hypothesis, we next evaluated healing with applied direct constant current of known intensity by means of a constant-current generator with an output range of 200-1000 PA. The treatment regimen, which utilized lowintensity direct current (LIDC), produced a healing response clearly superior to that achieved with gold leaf. Subsequent refinement of the treatment protocol has resulted in a substantial improvement in healing rate over our initial results.We were surprised to find that the effects of polarity were the opposite to those
Fiberglass (FG) is the largest category of man-made mineral fibers (MMVFs). Many types of FG are manufactured for specific uses building insulation, air handling, filtration, and sound absorption. In the United States, > 95% of FG produced is for building insulation. Several inhalation studies in rodents of FG building insulation have shown no indication of pulmonary fibrosis or carcinogenic activity. However, because of increasing use and potential for widespread human exposure, a chronic toxicity/carcinogenicity inhalation study of a typical building insulation FG (MMVF 10a) was conducted in hamsters, which were shown to be highly sensitive to the induction of mesotheliomas with another MMVF. A special-application FG (MMVF 33) and amosite asbestos were used for comparative purposes. Groups of 140 weanling male Syrian golden hamsters were exposed via nose-only inhalation for 6 h/day, 5 days/wk for 78 wk to either filtered air (chamber controls) or MMVF 10a, MMVF 33, or amosite asbestos at 250-300 WHO fibers/cm(3) with two additional amosite asbestos groups at 25 and 125 WHO fibers/cm(3). They were then held unexposed for 6 wk until approximately 10-20% survival. After 13, 26, 52, and 78 wk, various pulmonary parameters and lung fiber burdens were evaluated. Groups hamsters were removed from exposure at 13 and 52 wk and were held until 78 wk (recovery groups). Initial lung deposition of long fibers (>20 microm in length) after a single 6-h exposure was similar for all 3 fibers exposed to 250-300 fibers/cm(3). MMVF 10a lungs showed inflammation (which regressed in recovery hamsters) but no pulmonary or pleural fibrosis or neoplasms. MMVF 33 induced more severe inflammation and mild interstitial and pleural fibrosis by 26 wk that progressed in severity until 52 wk, after which it plateaued. While the inflammatory lesions regressed in the recovery animals, pulmonary or pleural fibrosis did not. A single multicentric mesothelioma was observed at 32 wk. No neoplasms were found in the remainder of the study. Amosite asbestos produced dose-related inflammation and pulmonary and pleural fibrosis as early as 13 wk in all 3 exposure levels. The lesions progressed during the course of the study, and at 78 wk severe pulmonary fibrosis with large areas of consolidation was observed in the highest 2 exposure groups. Progressive pleural fibrosis with mesothelial hypertrophy and hyperplasia was present in the thoracic wall and diaphragm in most animals and increased with time in the recovery hamsters. While no pulmonary neoplasms were observed in the amosite exposed hamsters, a large number of mesotheliomas were found; 25 fibers/cm(3), 3.6%; 125 fibers/cm(3), 25.9%; and 250 fibers/cm(3), 19.5%. For the 3 fiber types, the severity of the lung and pleural lesions generally paralleled the cumulative fiber burden, especially those >20 microm length, in the lung, thoracic wall, and diaphragm. They also inversely paralleled the in vitro dissolution rates; that is, the faster the dissolution, the lower were the cumulative lung burdens ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.