Confocal Raman spectroscopy is introduced as a noninvasive in vivo optical method to measure molecular concentration profiles in the skin. It is shown how it can be applied to determine the water concentration in the stratum corneum as a function of distance to the skin surface, with a depth resolution of 5 microm. The resulting in vivo concentration profiles are in qualitative and quantitative agreement with published data, obtained by in vitro X-ray microanalysis of skin samples. Semi-quantitative concentration profiles were determined for the major constituents of natural moisturizing factor (serine, glycine, pyrrolidone-5-carboxylic acid, arginine, ornithine, citrulline, alanine, histidine, urocanic acid) and for the sweat constituents lactate and urea. A detailed description is given of the signal analysis methodology that enables the extraction of this information from the skin Raman spectra. No other noninvasive in vivo method exists that enables an analysis of skin molecular composition as a function of distance to the skin surface with similar detail and spatial resolution. Therefore, it may be expected that in vivo confocal Raman spectroscopy will find many applications in basic and applied dermatologic research.
In vivo confocal Raman spectroscopy is a noninvasive optical method to obtain detailed information about the molecular composition of the skin with high spatial resolution. In vivo confocal scanning laser microscopy is an imaging modality that provides optical sections of the skin without physically dissecting the tissue. A combination of both techniques in a single instrument is described. This combination allows the skin morphology to be visualized and (subsurface) structures in the skin to be targeted for Raman measurements. Novel results are presented that show detailed in vivo concentration profiles of water and of natural moisturizing factor for the stratum corneum that are directly related to the skin architecture by in vivo cross-sectional images of the skin. Targeting of skin structures is demonstrated by recording in vivo Raman spectra of sweat ducts and sebaceous glands in situ. In vivo measurements on dermal capillaries yielded high-quality Raman spectra of blood in a completely noninvasive manner. From the results of this exploratory study we conclude that the technique presented has great potential for fundamental skin research, pharmacology (percutaneous transport), clinical dermatology, and cosmetic research, as well as for noninvasive analysis of blood analytes, including glucose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.