Live, attenuated bacterial vaccines (LBV) are promising candidates for the induction of a broad-based immune response directed at recombinant heterologous antigens and the corresponding pathogen. LBVs allow vaccination through the mucosal surfaces and specific targeting of professional antigen-presenting cells located at the inductive sites of the immune system. A novel approach exploits attenuated intracellular bacteria as delivery vectors for eukaryotic antigen-expression plasmids (so-called DNA vaccines). Candidate carrier bacteria include attenuated strains of Gram-positive and Gram-negative bacteria. These bacteria have been shown to deliver DNA vaccines to human cells in vitro and have also proven their in vivo efficacy in several experimental animal models of infectious diseases and different cancers. The clinical assessment of the safety, immunogenicity and efficacy of these candidate strains will be the next challenging step towards live bacterial DNA vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.