Formation of the inner cell mass (ICM) and trophectoderm (TE) marks the first differentiation event in mammalian development. These two cell types have completely divergent fates for the remainder of the developmental process. The molecular mechanisms that regulate ICM and TE formation are poorly characterized in horses. The objective of this study was to establish the transcriptome profiles of ICM and TE cells from horse blastocysts using RNA sequencing (RNA-seq). A total of 12 270 genes were found to be expressed in either lineage. Global analysis of the transcriptome profiles by unsupervised clustering indicated that ICM and TE samples presented different gene expression patterns. Statistical analysis indicated that 1662 genes were differentially expressed (adjusted P < 0.05 and fold change > 2) between ICM and TE. Genes known to be specific to the ICM and TE were expressed primarily in their respective tissue. Transcript abundance for genes related to biological processes important for horse blastocyst formation and function is presented and discussed. Collectively, our data and analysis serve as a valuable resource for gene discovery and unraveling the fundamental mechanisms of early horse development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.