At implantation the endometrium undergoes modifications necessary for its physical interactions with the trophoblast as well as the development of the conceptus. We aim to identify endometrial factors and pathways essential for a successful implantation in the caruncular (C) and the intercaruncular (IC) areas in cattle. Using a 13,257-element bovine oligonucleotide array, we established expression profiles at day 20 of the estrous cycle or pregnancy (implantation), revealing 446 and 1,295 differentially expressed genes (DEG) in C and IC areas, respectively (false discovery rate ϭ 0.08). The impact of the conceptus was higher on the immune response function in C but more prominent on the regulation of metabolism function in IC. The C vs. IC direct comparison revealed 1,177 and 453 DEG in cyclic and pregnant animals respectively (false discovery rate ϭ 0.05), with a major impact of the conceptus on metabolism and cell adhesion. We selected 15 genes including C11ORF34, CXCL12, CXCR4, PLAC8, SCARA5, and NPY and confirmed their differential expression by quantitative RT-PCR. The cellular localization was analyzed by in situ hybridization and, upon pregnancy, showed gene-specific patterns of cell distribution, including a high level of expression in the luminal epithelium for C11ORF34 and MX1. Using primary cultures of bovine endometrial cells, we identified PTN, PLAC8, and CXCL12 as interferon-(IFNT) target genes and MSX1 and CXCR7 as IFNT-regulated genes, whereas C11ORF34 was not an IFNT-regulated gene. Our transcriptomic data provide novel molecular insights accounting for the biological functions related to the C or IC endometrial areas and may contribute to the identification of potential biomarkers for normal and perturbed early pregnancy.transcriptome; interferon-tau; pregnancy; cattle IN MAMMALS, the establishment and maintenance of pregnancy require a subtle and tightly regulated communication between the conceptus (embryo and embryonic annexes) and the maternal environment (85). The success of implantation relies on several essential steps including the adjustment of the uterine environment to support the development of the conceptus and the profound remodeling of the endometrium structure necessary for the apposition, adhesion, and invasion phases (36). In contrast to human and rodents, the invasion of the maternal tissue by the fetal tissue is very limited in ruminants (71) and leads to a synepitheliochorial placentation (86). Since the trophoblast appears to be intrinsically invasive in mammals (11), apposition, adhesion, and invasion processes are thought to be controlled by the endometrium (83). In mammalian species presenting an invasive implantation, decidua restrains the invasion of the embryo in a spatiotemporal manner (20). The expression and the regulation of some factors involved in the apposition, adhesion, and invasion aspects of implantation have been reported in ruminants (62, 79), but, overall, the comparative cascade of molecular mechanisms remains largely unknown.The sequence of events occ...
A major unresolved issue in the cloning of mammals by somatic cell nuclear transfer (SCNT) is the mechanism by which the process fails after embryos are transferred to the uterus of recipients before or during the implantation window. We investigated this problem by using RNA sequencing (RNA-seq) to compare the transcriptomes in cattle conceptuses produced by SCNT and artificial insemination (AI) at day (d) 18 (preimplantation) and d 34 (postimplantation) of gestation. In addition, endometrium was profiled to identify the communication pathways that might be affected by the presence of a cloned conceptus, ultimately leading to mortality before or during the implantation window. At d 18, the effects on the transcriptome associated with SCNT were massive, involving more than 5,000 differentially expressed genes (DEGs). Among them are 121 genes that have embryonic lethal phenotypes in mice, cause defects in trophoblast and placental development, and/or affect conceptus survival in mice. In endometria at d 18, <0.4% of expressed genes were affected by the presence of a cloned conceptus, whereas at d 34, ∼36% and <0.7% of genes were differentially expressed in intercaruncular and caruncular tissues, respectively. Functional analysis of DEGs in placental and endometrial tissues suggests a major disruption of signaling between the cloned conceptus and the endometrium, particularly the intercaruncular tissue. Our results support a "bottleneck" model for cloned conceptus survival during the periimplantation period determined by gene expression levels in extraembryonic tissues and the endometrial response to altered signaling from clones. somatic cell nuclear transfer | conceptus | placentation | conceptus-maternal communication I n cattle, as in other mammals, exquisitely orchestrated physiological changes of the conceptus and uterus are necessary for a successful pregnancy. Synchronization of the complex events at the time of implantation relies on the timed release of molecular signals from the conceptus and the endometrium. Embryo-derived IFN-τ (IFNT) is the major signal of pregnancy in cattle, preventing luteolysis and regulating the expression of genes that are responsible for promoting local changes in the endometrium to accommodate the conceptus (1-3). In females, progesterone is the major driver of endometrial changes that prepare the uterus for conceptus implantation (4, 5). In addition to IFNT and progesterone, signaling between the bovine conceptus and the endometrium is bidirectional, and involves several pathways that work concomitantly (6) for the successful establishment of pregnancy.Independent studies have shown that the majority of embryonic losses in cattle occur during the period that spans embryo cleavage until the attachment of the blastocyst to the endometrium (7). The reasons for these losses remain unclear and likely result from several factors, including embryonic lethal genes (8, 9), environmental stressors (7), and endometrial condition (10). Cloning of cattle by somatic cell nuclear transfer ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.