The clinical condition COVID-19, caused by SARS-CoV-2, was declared a pandemic by the WHO in March 2020. Currently, there are more than 5 million cases worldwide, and the pandemic has increased exponentially in many countries, with different incidences and death rates among regions/ethnicities and, intriguingly, between sexes. In addition to the many factors that can influence these discrepancies, we suggest a biological aspect, the genetic variation at the viral S protein receptor in human cells, ACE2 (angiotensin I-converting enzyme 2), which may contribute to the worse clinical outcome in males and in some regions worldwide. We performed exomics analysis in native and admixed South American populations, and we also conducted in silico genomics databank investigations in populations from other continents. Interestingly, at least ten polymorphisms in coding, noncoding and regulatory sites were found that can shed light on this issue and offer a plausible biological explanation for these epidemiological differences. In conclusion, there are ACE2 polymorphisms that could influence epidemiological discrepancies observed among ancestry and, moreover, between sexes.
Background: Since the publication of the first Brazilian Consensus on Gastric Cancer (GC) in 2012 carried out by the Brazilian Gastric Cancer Association, new concepts on diagnosis, staging, treatment and follow-up have been incorporated. Aim: This new consensus is to promote an update to professionals working in the fight against GC and to provide guidelines for the management of patients with this condition. Methods: Fifty-nine experts answered 67 statements regarding the diagnosis, staging, treatment and prognosis of GC with five possible alternatives: 1) fully agree; 2) partially agree; 3) undecided; 4) disagree and 5) strongly disagree A consensus was adopted when at least 80% of the sum of the answers “fully agree” and “partially agree” was reached. This article presents only the responses of the participating experts. Comments on each statement, as well as a literature review, will be presented in future publications. Results: Of the 67 statements, there was consensus in 50 (74%). In 10 declarations, there was 100% agreement. Conclusion: The gastric cancer treatment has evolved considerably in recent years. This consensus gathers consolidated principles in the last decades, new knowledge acquired recently, as well as promising perspectives on the management of this disease.
Background: Intestinal and diffuse gastric adenocarcinomas differ in clinical, epidemiological and molecular features. However, most of the concepts related to the intestinal-type are translated to gastric adenocarcinoma in general; thus, the peculiarities of the diffuse-type are underappreciated. Results: Besides its growing importance, there are many gaps about the diffuse-type carcinogenesis and, as a result, its epidemiologic and pathogenetic features remain poorly understood. Conclusions: Alternative hypotheses to explain these features are discussed, including the role of the gastric microbiota, medical therapies, and modifications in the stomach's microenvironment. Background Gastric adenocarcinoma (GAC) is a leading cause of cancer-related deaths, although a reduction in incidence has been observed [1, 2]. Whereas these are different histology entities [3], intestinal and diffuse Lauren's GAC types are jointly considered when interpreting epidemiological data, and when contemplating interventional approaches aiming to reduce gastric cancer (GC) burden [1, 2]. Since the intestinal-GAC has been historically the most often studied type, data from this tumor are usually extrapolated to the diffuse-GAC. However, when examining and interpreting carcinogens and the epidemiology of diffuse-type carcinogenesis, inconsistences with regard to intestinal-type are evident [3]. These differences should be considered when trying to understand its specific pathogenesis and to apply this knowledge to develop interventional approaches. Our purpose in this commentary is to discuss some of the issues surrounding the diffuse-type GAC and to offer hypothesis to shed light on these features. Epidemiology GC was responsible for more than 1,000,000 new cases in 2018 with an estimated 783,000 deaths, being the fifth most frequent and the third leading cause of cancer death. The global incidence of GC varies markedly, with the highest burden observed in some of the less developed areas of the world. Asia, Eastern Europe and South America account for most GC cases and, thus, for their high mortality rates [1]. GAC is the most common type of GC, being classically classified, according to Lauren, as intestinal-or diffuse-types [2]. GAC incidence has been declining since 1930's [1], mainly due to the marked decrease of the intestinal-type. A decreasing trend of the intestinal-and a stable or increasing trend of the diffuse-type have been found in both high and low GC risk areas [4, 5]. However, the incidence in Korean Americans has declined during recent years, for both cardia and non-cardia sites and for both intestinal-and diffuse-type histology [6]. Several factors can explain the decreased incidence of GAC, including
Identifying a microbiome pattern in gastric cancer (GC) is hugely debatable due to the variation resulting from the diversity of the studied populations, clinical scenarios, and metagenomic approach. <i>H. pylori</i> remains the main microorganism impacting gastric carcinogenesis and seems necessary for the initial steps of the process. Nevertheless, an additional non-<i>H. pylori</i> microbiome pattern is also described, mainly at the final steps of the carcinogenesis. Unfortunately, most of the presented results are not reproducible, and there are no consensual candidates to share the <i>H. pylori</i> protagonists. Limitations to reach a consistent interpretation of metagenomic data include contamination along every step of the process, which might cause relevant misinterpretations. In addition, the functional consequences of an altered microbiome might be addressed. Aiming to minimize methodological bias and limitations due to small sample size and the lack of standardization of bioinformatics assessment and interpretation, we carried out a comprehensive analysis of the publicly available metagenomic data from various conditions relevant to gastric carcinogenesis. Mainly, instead of just analyzing the results of each available publication, a new approach was launched, allowing the comprehensive analysis of the total sample amount, aiming to produce a reliable interpretation due to using a significant number of samples, from different origins, in a standard protocol. Among the main results, <i>Helicobacter</i> and <i>Prevotella</i> figured in the “top 6” genera of every group. <i>Helicobacter</i> was the first one in chronic gastritis (CG), gastric cancer (GC), and adjacent (ADJ) groups, while <i>Prevotella</i> was the leader among healthy control (HC) samples. Groups of bacteria are differently abundant in each clinical situation, and bacterial metabolic pathways also diverge along the carcinogenesis cascade. This information may support future microbiome interventions aiming to face the carcinogenesis process and/or reduce GC risk.
This study evaluated the relative mRNA expression levels of nerve growth factor (NGF) and the p75 neurothrophin receptor (p75NTR) in different histological stages of human liver disease. Fifty-one liver biopsy specimens obtained from patients with hepatitis B virus (n = 6), hepatitis C virus (n = 28), and non-viral hepatitis – (n = 9) and standard histological liver (n = 8) as controls (CT) were subjected to qPCR and histopathological exams. Our data revealed a significant difference in the NGF expression levels between the three patient groups and the Control group. p75NTR expression levels in the HCV and NVH groups were higher than those observed in the HBV and Control groups. In cases of liver cirrhosis, higher p75NTR mRNA expression was observed, whereas NGF was expressed at higher levels in patients with hepatic fibrosis. NGF expression was lower in the F1 liver fibrosis stage, and p75NTR receptor expression continuously and proportionately increased compared to the increase in the degree of fibrosis and was significantly higher in livers in fibrosis stages 3 and 4. The hepatic levels of NGF and p75NTR were decreased and increased, respectively, relative to the stage of inflammatory activity. A positive correlation between p75NTR and NGF gene expression was observed in livers with mild to moderate fibrosis, though not in cases of severe fibrosis and cirrhosis.ConclusionOur results demonstrate that the course of chronic liver disease can be regulated by NGF and p75NTR, which function by decreasing or inhibiting hepatocyte regeneration and proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.