When neuropathic pain is maintained long term, it can also lead to the development of emotional disorders that are even more intense than pain perception and difficult to treat. Hydrogen sulfide (H2S) donors relieve chronic pain, but their effects on the associated mood disorders are not completely elucidated. We evaluated if treatment with DADS (diallyl disulfide) or GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex), two slow-releasing H2S donors, inhibits the anxiety- and depressive-like behaviors that concur with chronic neuropathic pain generated by sciatic nerve injury in mice. The modulatory role of these drugs in the inflammatory, apoptotic, and oxidative processes implicated in the development of the affective disorders was assessed. Our results revealed the anxiolytic, antidepressant, and antinociceptive properties of DADS and GYY4137 during neuropathic pain by inhibiting microglial activation and the up-regulation of phosphoinositide 3-kinase/phosphorylated protein kinase B and BAX in the amygdala (AMG) and/or periaqueductal gray matter (PAG). Both treatments also normalized and/or activated the endogenous antioxidant system, but only DADS blocked ERK 1/2 phosphorylation. Both H2S donors decreased allodynia and hyperalgesia in a dose-dependent manner by activating the Kv7 potassium channels and heme oxygenase 1 signaling pathways. This study provides evidence of the anxiolytic and antidepressant properties of DADS and GYY4137 during neuropathic pain and reveals their analgesic actions, suggesting that these therapeutic properties may result from the inhibition of the inflammatory, apoptotic, and oxidative responses in the AMG and/or PAG. These findings support the use of these treatments for the management of affective disorders accompanying chronic neuropathic pain.
Osteoarthritis and its associated comorbidities are important clinical problems that have a negative impact on the quality of life, and its treatment remains unresolved. We investigated whether the systemic administration of slow-releasing hydrogen sulfide (H2S) donors, allyl isothiocyanate (A-ITC) and phenyl isothiocyanate (P-ITC), alleviates chronic osteoarthritis pain and the associated emotional disorders. In C57BL/6 female mice with osteoarthritis pain induced by the intra-articular injection of monosodium iodoacetate, we evaluated the effects of repeated administration of A-ITC and P-ITC on the (i) mechanical allodynia and grip strength deficits; (ii) emotional conducts; and (iii) glial activity and expression of inducible nitric oxide synthase (NOS2), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and antioxidant enzymes (heme oxygenase 1, NAD(P)H:quinone oxidoreductase-1, glutathione S-transferase mu 1 and alpha 1) in the hippocampus. The administration of A-ITC and P-ITC inhibited the mechanical allodynia, the grip strength deficits, and the depressive-like behaviors accompanying osteoarthritis. Both treatments inhibited microglial activation, normalized the upregulation of NOS2 and PI3K/p-Akt, and maintained high levels of antioxidant/detoxificant enzymes in the hippocampus. Data suggest that treatment with low doses of slow-releasing H2S donors might be an interesting strategy for the treatment of nociception, functional disability, and emotional disorders associated with osteoarthritis pain.
Chronic inflammatory pain is present in many pathologies and diminishes the patient’s quality of life. Moreover, most current treatments have a low efficacy and significant side effects. Recent studies demonstrate the analgesic properties of slow-releasing hydrogen sulfide (H2S) donors in animals with osteoarthritis or neuropathic pain, but their effects in inflammatory pain and related pathways are not completely understood. Several treatments potentiate the analgesic actions of δ-opioid receptor (DOR) agonists, but the role of H2S in modulating their effects and expression during inflammatory pain remains untested. In C57BL/6J male mice with inflammatory pain provoked by subplantar injection of complete Freund’s adjuvant, we evaluated: (1) the antiallodynic and antihyperalgesic effects of different doses of two slow-releasing H2S donors, i.e., diallyl disulfide (DADS) and phenyl isothiocyanate (P-ITC) and their mechanism of action; (2) the pain-relieving effects of DOR agonists co-administered with H2S donors; (3) the effects of DADS and P-ITC on the oxidative stress and molecular changes caused by peripheral inflammation. Results demonstrate that both H2S donors inhibited allodynia and hyperalgesia in a dose-dependent manner, potentiated the analgesic effects and expression of DOR, activated the antioxidant system, and reduced the nociceptive and apoptotic pathways. The data further demonstrate the possible participation of potassium channels and the Nrf2 transcription factor signaling pathway in the pain-relieving activities of DADS and P-ITC. This study suggests that the systemic administration of DADS and P-ITC and local application of DOR agonists in combination with slow-releasing H2S donors are two new strategies for the treatment of inflammatory pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.