Osteoarthritis and its associated comorbidities are important clinical problems that have a negative impact on the quality of life, and its treatment remains unresolved. We investigated whether the systemic administration of slow-releasing hydrogen sulfide (H2S) donors, allyl isothiocyanate (A-ITC) and phenyl isothiocyanate (P-ITC), alleviates chronic osteoarthritis pain and the associated emotional disorders. In C57BL/6 female mice with osteoarthritis pain induced by the intra-articular injection of monosodium iodoacetate, we evaluated the effects of repeated administration of A-ITC and P-ITC on the (i) mechanical allodynia and grip strength deficits; (ii) emotional conducts; and (iii) glial activity and expression of inducible nitric oxide synthase (NOS2), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and antioxidant enzymes (heme oxygenase 1, NAD(P)H:quinone oxidoreductase-1, glutathione S-transferase mu 1 and alpha 1) in the hippocampus. The administration of A-ITC and P-ITC inhibited the mechanical allodynia, the grip strength deficits, and the depressive-like behaviors accompanying osteoarthritis. Both treatments inhibited microglial activation, normalized the upregulation of NOS2 and PI3K/p-Akt, and maintained high levels of antioxidant/detoxificant enzymes in the hippocampus. Data suggest that treatment with low doses of slow-releasing H2S donors might be an interesting strategy for the treatment of nociception, functional disability, and emotional disorders associated with osteoarthritis pain.
Background: Therapies to treat chronic neuropathic pain and its associated comorbidities are limited. Recent studies demonstrated that the administration of slow-releasing hydrogen sulfide (H2S) donors inhibited chemotherapy-induced neuropathic pain. However, the antidepressant or anxiolytic effects of these compounds and their mechanisms of action during chronic neuropathic pain have not been evaluated. Aims: To determine whether the administration of two slow-releasing H2S donors, allyl isothiocyanate (A-ITC) and phenyl isothiocyanate (P-ITC), inhibits the nociceptive and emotional disorders associated with chronic neuropathic pain. Methods: In C57BL/6 male mice with neuropathic pain caused by the chronic constriction of the sciatic nerve, we assessed the effects of intraperitoneal administration of A-ITC and P-ITC in (a) the mechanical allodynia, thermal hyperalgesia and thermal allodynia induced by nerve ligation; (b) the anxiety- and depressive-like behaviours linked with neuropathic pain; (c) glial activation and mitogen-activated protein kinases phosphorylation, and (d) expression of the antioxidant enzymes, heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase1, and glutathione S-transferase mu-1 (GSTM1), and alpha-1 (GSTA1), in hippocampus and prefrontal cortex (PFC). Results: Both treatments inhibited the allodynia and hyperalgesia, depressive-like behaviours, astroglial activation, and the extracellular signal-regulated kinase 1/2 phosphorylation but were unable to abolish the anxiety-like behaviours accompanying neuropathic pain. A-ITC and P-ITC also augmented the expression of HO-1, GSTM1, and GSTA1 in the hippocampus and/or PFC. Conclusions: The administration of slow-releasing H2S donors might be a promising treatment for the management of chronic neuropathic pain and some associated comorbidities via inhibiting the inflammatory and plasticity changes, and activating the endogenous antioxidant responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.