Prey intake by Atlantic salmon Salmo salar and brown trout Salmo trutta was measured across different riparian vegetation types: grassland, open canopy deciduous and closed canopy deciduous, in upland streams in County Mayo, Western Ireland. Fishes were collected by electrofishing while invertebrates were sampled from the benthos using a Surber sampler and drifting invertebrates collected in drift traps. Aquatic invertebrates dominated prey numbers in the diets of 0þ year Atlantic salmon and brown trout and 1þ year Atlantic salmon, whereas terrestrial invertebrates were of greater importance for diets of 1þ and 2þ year brown trout. Terrestrial prey biomass was generally greater than aquatic prey for 1þ and 2þ year brown trout across seasons and riparian types. Prey intake was greatest in spring and summer and least in autumn apart from 2þ year brown trout that sustained feeding into autumn. Total prey numbers captured tended to be greater for all age classes in streams with deciduous riparian canopy. Atlantic salmon consumed more aquatic prey and brown trout more terrestrial prey with an ontogenetic increase in prey species richness and diversity. Atlantic salmon and brown trout diets were most similar in summer. Terrestrial invertebrates provided an important energy subsidy particularly for brown trout. In grassland streams, each fish age class was strongly associated with aquatic, mainly benthic invertebrates. In streams with deciduous riparian canopy cover, diet composition partitioned between conspecifics with older brown trout associated with surface drifting terrestrial invertebrates and older Atlantic salmon associated with aquatic invertebrates with a high drift propensity in the water column and 0þ year fish feeding on benthic aquatic invertebrates. Deciduous riparian canopy cover may therefore facilitate vertical partitioning of feeding position within the water column between sympatric Atlantic salmon and brown trout. Implications for riparian management are discussed.
1. Top-down control of prey assemblages by fish predators has been clearly demonstrated in lakes (for zooplankton prey) and rivers (for macroinvertebrate prey). Fish predation can have a significant impact on the body size of prey assemblages; often large-bodied prey are reduced in abundance, and indirect facilitation of small-bodied prey occurs potentially initiating a trophic cascade. 2. Benthic communities in aquatic ecosystems also include a numerous and functionally important meiofaunal-sized component, but in freshwaters the impact of fish predation on meiofaunal assemblages is unknown. We used a laboratory microcosm study to explore the impact of juvenile fish predation on the abundance and size structure of a riverine meiofaunal assemblage. 3. The presence of fish in our microcosms had no significant effect on overall meiofaunal (temporary and permanent) abundance. However, for the Copepoda, we found the first evidence of top-down control of freshwater meiofaunal assemblages; in microcosms with juvenile fish, the abundance of large-bodied Copepoda was significantly reduced, whereas small-bodied Copepoda were significantly more abundant suggesting indirect facilitation. 4. We conclude that predation by juvenile fish can alter the structure of freshwater meiofaunal assemblages, although we do not yet know whether these relatively subtle changes are overwhelmed by large-scale events such as flow disturbances.
1. A series of laboratory-based equations on trout growth and bioenergetics developed by J.M. Elliott were applied to data collected for brown trout (Salmo trutta L.) under field conditions in Co. Mayo, Western Ireland. Fish were collected by electrofishing eight upland streams with contrasting riparian vegetation; grassland, open canopy and closed canopy deciduous. 2. Stream temperatures, one of the main influencing factors on fish growth and energetics, did not differ significantly between riparian types. 3. Observed growth rates were lower than the predicted maximum growth rates and were not influenced by riparian vegetation type. Growth ranged between 0.66% day )1 for 0 + trout to 0.08% day )1 for 2 + trout. 4. Production estimates showed no clear difference between riparian vegetation types over the growing season. 5. Fish densities and biomass tended to be greater in closed canopy streams particularly in summer. 6. Actual ration sizes calculated for trout were similar to the ration required for maintenance metabolism and were only 45-63% of the maximum potential rations. Although there was an ontogenetic increase in ration size with increasing fish age, the proportion of ration available for growth (i.e. the difference between actual and maintenance rations) did not differ between age classes but was greatest in summer. 1+ and 2+ trout show greatest ration available for growth in grassland streams. 7. Trout growth did not differ between riparian vegetation types but did vary seasonally with greatest attainment in summer. Growth was limited in the present study possibly due to combined effects of reduced prey available to fish and low stream temperatures reducing metabolic requirements. In such food limited systems, terrestrial invertebrate energy subsidies could have significant benefits to brown trout growth, production and bioenergetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.