SUMMARYA new modelling framework is presented for application to a range of three-dimensional (3D) multi-scale oceanographic problems. The approach is based upon a finite element discretization on an unstructured tetrahedral mesh which is optimized to represent highly complex geometries. Throughout a simulation the mesh is dynamically adapted in 3D to optimize the representation of evolving solution structures. The adaptive algorithm makes use of anisotropic measures of solution complexity and a load-balanced parallel mesh optimization algorithm to vary resolution and allow long, thin elements to align with features such as boundary layers. The modelling framework presented is quite different from the majority of ocean models in use today, which are typically based on static-structured grids. Finite element (and volume) methods on unstructured meshes are, however, gaining popularity in the oceanographic community. The model presented here is novel in its use of unstructured meshes and anisotropic adaptivity in 3D, its ability to represent a range of coupled multi-scale solution structures and to simulate non-hydrostatic dynamics.
Lower to Middle Turonian deposits within the Bohemian Cretaceous Basin (Central Europe) consist of coarse-grained deltaic sandstones passing distally into fine-grained offshore sediments. Dune-scale cross-beds superimposed on delta-front clinoforms indicate a vigorous basinal palaeocirculation capable of transporting coarse-grained sand across the entire depth range of the clinoforms (ca 35 m). Bi-directional, alongshore-oriented, trough cross-set axes, silt drapes and reactivation surfaces indicate tidal activity. However, the Bohemian Cretaceous Basin at this time was over a thousand kilometres from the shelf break and separated from the open ocean by a series of small islands. The presence of tidally-influenced deposits in a setting where co-oscillating tides are likely to have been damped down by seabed friction and blocked by emergent land masses is problematic. The Imperial College Ocean Model, a fully hydrodynamic, unstructured mesh finite element model, is used to test the hypothesis that tidal circulation in this isolated region was capable of generating the observed grain-size distributions, bedform types and palaeocurrent orientations. The model is first validated for the prediction of bed shear stress magnitudes and sediment transport pathways against the present-day North European shelf seas that surround the British Isles. The model predicts a microtidal to mesotidal regime for the Bohemian Cretaceous Basin across a range of sensitivity tests with elevated tidal ranges in local embayments. Funnelling associated with straits increases tidal current velocities, generating bed shear stresses that were capable of forming the sedimentary structures observed in the field. The model also predicts instantaneous bi-directional currents with orientations comparable with those measured in the field. Overall, the Imperial College Ocean Model predicts a vigorous tide-driven palaeocirculation within the Bohemian Cretaceous Basin that would indisputably have influenced sediment dispersal and facies distributions. Palaeocurrent vectors and sediment transport pathways however vary markedly in the different sensitivity tests. Accurate modelling of these parameters, in this instance, requires greater palaeogeographic certainty than can be extracted from the available rock record.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.