In this article, the enzymes of brain and associated tissues that can degrade thyrotropin-releasing hormone (TRH) and luteinising hormone-releasing hormone (LH-RH) are reviewed. As both TRH and LH-RH are considered to act as neurotransmitters or neuromodulators in the CNS, attention is paid to the subcellular location of the enzymes described and how their topographies and substrate specificities fit them to playing roles as inactivating agents for TRH and LH-RH or as regulators of intracellular concentrations of TRH and LH-RH. Consideration is also given to enzymes involved in biotransformation of TRH to secondary metabolites that exhibit biological activity and to enzymes involved in the metabolism of secondary metabolites.
Aims: To determine the influence of cheese cooking temperature on autolysis and permeabilization of two lactococcal starter strains in broth and in Cheddar cheese juice during ripening. Methods and Results: Flow cytometry (FCM) was used to identify and enumerate intact and permeabilized cells in broth and in Cheddar cheese juice. Levels of intracellular enzyme activities were quantified concurrently. Permeabilized cell numbers increased for both strains in broth following a temperature shift from 32 to 38°C and was accompanied by an increase in the level of accessible intracellular enzyme activities. The relative proportions of intact and permeabilized cell populations, as detected by FCM in cheese juice, changed during 42-day ripening. Permeabilized cell populations increased during ripening for both strains; however, an increase in accessible intracellular enzyme activity was observed only for the highly autolytic strain Lactococcus lactis AM2. Conclusions: Differences in the autolytic and permeabilization response induced by cooking temperature in two lactococcal strains affects intracellular enzyme accessibility in Cheddar cheese. Significance and Impact of the Study: This study highlights the importance of the autolytic and permeabilization properties of lactic acid bacteria starter strains and their impact on cheese ripening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.