Electrospun membranes have been widely used as scaffolds for soft tissue engineering due to their extracellular matrix-like structure. A mussel-inspired coating approach based on 3,4-dihydroxy-DL-phenylalanine (DOPA) polymerization was proposed to graft gelatin (G) onto poly(lactic-co-glycolic) acid (PLGA) electrospun membranes. PolyDOPA coating allowed grafting of gelatin to PLGA fibers without affecting their bulk characteristics, such as molecular weight and thermal properties. PLGA electrospun membranes were dipped in a DOPA solution (2 mg/mL, Tris/HCl 10 mM, pH 8.5) for 7 h and then incubated in G solution (2 mg/mL, Tris/HCl 10 mM, pH 8.5) for 16 h. PLGA fibers had an average diameter of 1.37 ± 0.23 µm. Quartz crystal microbalance with dissipation technique (QCM-D) analysis was performed to monitor DOPA polymerization over time: after 7 h the amount of deposited polyDOPA was 71 ng/cm2. After polyDOPA surface functionalization, which was, also revealed by Raman spectroscopy, PLGA membranes maintained their fibrous morphology, however the fiber size and junction number increased. Successful functionalization with G was demonstrated by FTIR-ATR spectra, which showed the presence of G adsorption bands at 1653 cm−1 (Amide I) and 1544 cm−1 (Amide II) after G grafting, and by the Kaiser Test, which revealed a higher amount of amino groups for G functionalized membranes. Finally, the biocompatibility of the developed substrates and their ability to induce cell growth was assessed using Neonatal Normal Human Dermal Fibroblasts.
In vitro models of pathological cardiac tissue have attracted interest as predictive platforms for preclinical validation of therapies. However, models reproducing specific pathological features, such as cardiac fibrosis size (i.e., thickness and width) and stage of development are missing. This research was aimed at engineering 2D and 3D models of early-stage post-infarct fibrotic tissue (i.e., characterized by non-aligned tissue organization) on bioartificial scaffolds with biomimetic composition, design, and surface stiffness. 2D scaffolds with random nanofibrous structure and 3D scaffolds with 150 µm square-meshed architecture were fabricated from polycaprolactone, surface-grafted with gelatin by mussel-inspired approach and coated with cardiac extracellular matrix (ECM) by 3 weeks culture of human cardiac fibroblasts. Scaffold physicochemical properties were thoroughly investigated. AFM analysis of scaffolds in wet state, before cell culture, confirmed their close surface stiffness to human cardiac fibrotic tissue. Following 3 weeks culture, biomimetic biophysical and biochemical scaffold properties triggered the activation of myofibroblast phenotype. Upon decellularization, immunostaining, SEM and two-photon excitation fluorescence microscopy showed homogeneous decoration of both 2D and 3D scaffolds with cardiac ECM. The versatility of the approach was demonstrated by culturing ventricular or atrial cardiac fibroblasts on scaffolds, thus suggesting the possibility to use the same scaffold platforms to model both ventricular and atrial cardiac fibrosis. In the future, herein developed in vitro models of cardiac fibrotic tissue, reproducing specific pathological features, will be exploited for a fine preclinical tuning of therapies.
Cardiac infarction is a global burden worldwide that leads to fibrotic and not contractile myocardial tissue. In this work, in vitro models of infarcted tissue were developed as tools to test novel therapies for cardiac regeneration in the future. Human cardiac fibroblasts were cultured on scaffolds, with different compositions and architectures, as to mimic structural and chemical features of infarcted cardiac tissue. Early findings from in vitro cell tests were reported, showing an enhancement of cell attachment and proliferation in the case of “bioartificial” scaffolds, i.e. scaffolds based on a synthetic and a bioactive polymer.
Adverse remodeling post-myocardial infarction is hallmarked by the phenotypic change of cardiac fibroblasts (CFs) into myofibroblasts (MyoFs) and over-deposition of the fibrotic extracellular matrix (ECM) mainly composed by fibronectin and collagens, with the loss of tissue anisotropy and tissue stiffening. Reversing cardiac fibrosis represents a key challenge in cardiac regenerative medicine. Reliable in vitro models of human cardiac fibrotic tissue could be useful for preclinical testing of new advanced therapies, addressing the limited predictivity of traditional 2D cell cultures and animal in vivo models. In this work, we engineered a biomimetic in vitro model, reproducing the morphological, mechanical, and chemical cues of native cardiac fibrotic tissue. Polycaprolactone (PCL)-based scaffolds with randomly oriented fibers were fabricated by solution electrospinning technique, showing homogeneous nanofibers with an average size of 131 ± 39 nm. PCL scaffolds were then surface-functionalized with human type I collagen (C1) and fibronectin (F) by dihydroxyphenylalanine (DOPA)-mediated mussel-inspired approach (PCL/polyDOPA/C1F), in order to mimic fibrotic cardiac tissue-like ECM composition and support human CF culture. BCA assay confirmed the successful deposition of the biomimetic coating and its stability during 5 days of incubation in phosphate-buffered saline. Immunostaining for C1 and F demonstrated their homogeneous distribution in the coating. AFM mechanical characterization showed that PCL/polyDOPA/C1F scaffolds, in wet conditions, resembled fibrotic tissue stiffness with an average Young's modulus of about 50 kPa. PCL/polyDOPA/C1F membranes supported human CF (HCF) adhesion and proliferation. Immunostaining for α-SMA and quantification of α-SMA-positive cells showed HCF activation into MyoFs in the absence of a transforming growth factor β (TGF-β) profibrotic stimulus, suggesting the intrinsic ability of biomimetic PCL/polyDOPA/C1F scaffolds to sustain the development of cardiac fibrotic tissue. A proof-ofconcept study making use of a commercially available antifibrotic drug confirmed the potentialities of the developed in vitro model for drug efficacy testing. In conclusion, the proposed model was able to replicate the main hallmarks of early-stage cardiac fibrosis, appearing as a promising tool for future preclinical testing of advanced regenerative therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.