The microbiologically influenced corrosion (MIC) is a very dangerous process, which affects the oil industry. The activity and microorganisms' growth at the pipelines steel cause surface modifications, which can induce a more complex corrosion process. The biocide evaluation for the MIC decrease has been normally based upon microbiological tests, and just a few references mention alternating methods which can be used as criteria for their evaluation. In this work, a commercial biocide was tested, using different electrochemical laboratory techniques, to determine its effect upon a biofilm generating bacteria consortium.Using microbiological techniques, the biocide lethal concentration was determined, and a concentration of 200 ppm was used to kill completely the consortium population in both, plancktonic and sessile parts. The electrochemical techniques: Polarisation Resistance (PR) and Electrochemical Impedance Spectroscopy (EIS), allowed describing the corrosion process associated to the microbial consortium and the biocide effect upon it.
During the characterization of sediments formed in pipelines transporting hydrocarbons, the knowledge of the microbiological diversity becomes very interesting, especially when it is related to microbiologically influenced corrosion (MIC). The presence of microorganisms is considered as one of the factors that affect the corrosion processes occurring at the pipeline; therefore, their corrosiveness must be determined. In this way, the identification of new species affecting the MIC processes is still considered relevant. In this work, the effect of Clostridium celerecrescens upon the corrosion of API KL 52 steel was evaluated. This microorganism was isolated and identified from the sediments collected during the inner cleaning procedures of a gas pipeline. The polarization resistance (PR) and electrochemical impedance spectroscopy (EIS) techniques were considered to estimate the microorganism behavior during the corrosion process. The results were complemented with a metal surface analysis, using a scanning electron microscope (SEM). The resistance values induced by the presence of the microorganisms clearly indicated that C. celerecrescens has an effect on the corrosion process occurring at the API XL 52 steel surface.
The objective of this study consisted in investigating the possible causes which give rise to the presence of low wall pipe thicknesses on a 16 00 natural gas transport pipeline, even though during the last 12-year period cathodic protection (CP) potentials were kept in the protection range at which external corrosion should not occur. Results from in-line inspection from a 16 00 natural gas transport pipeline showed 46 indications with more than 80% wall thickness lost due to external corrosion in the second segment of the pipeline. Direct inspection at the indication locations, review of the CP system performance, pipeline maintenance programs and studies, allowed to make an integral diagnostic where it was found out that the main cause of external corrosion was an inappropriate coating application since the pipeline construction, this situation has originated the increase of CP shielding effects through time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.