Provinsi Sumatera Utara di Indonesia tercatat telah memproduksi komoditas ekspor yang sangat tinggi untuk Ikan Kerapu. Hal ini harus dipertahankan sebagai upaya menjaga keberlangsungan ekonomi perikanan. Salah satu cara mengembangbiakan Ikan Kerapu adalah dengan marin akuakultur (marikultur) yang sangat bergantung pada ekologi lautan seperti keberadaan klorofil-a, Suhu Permukaan Laut (SPL), Muatan Padat Tersuspensi (MPT) dan topografi kedalaman laut (batimetri). Kondisi ekologi lautan yang sangat mudah berubah menghendaki pemantauan secara berkala. Penelitian ini memiliki tujuan pertama yaitu mengetahui kemampuan data penginderaan jauh untuk mengekstraksi parameter -parameter yang digunakan untuk kelayakan lokasi marikultur Ikan Kerapu. Citra Landsat 8 digunakan untuk mengetahui klorofil-a, SPL dan MPT, sedangkan data batimetri didapatkan dari ETOPO1, sebuah data topografi skala global yang memiliki perekaman permukaan lahan (terrain) hingga dasar lautan. Tujuan yang kedua adalah mengetahui keakuratan kesesuaian lokasi marikultur yang dihasilkan oleh pemrosesan citra pada Google Earth Engine (GEE). Hasil penelitian dibandingkan dengan peta referensi mengenai lokasi marikultur yang diperoleh dari Lembaga Penerbangan dan Antariksa Nasional (LAPAN) dan menampilkan hasil pengujian matriks akurasi sebesar 80 %. Hal ini membuktikan data penginderaan jauh dapat digunakan untuk membantu menentukan lokasi marikultur Ikan Kerapu dan GEE adalah platform yang sesuai untuk pemantauan secara berkala dengan kemampuan olah citra melalui komputasi awan (cloud computing) sekaligus dapat melakukan analisis penjenjangan bertingkat.
Remote sensing-based research in Indonesia using satellite imagery frequently faces the challenge of cloud coverage due to the tropical country. One spatial data that can be extracted from satellite imagery is bathymetry. However, cloud-covered water bathymetric extraction still needs to be examined. This study aims to understand the ability of Landsat 7 ETM+ acquired on 29 July 2013, and Landsat 8, acquired on 24 July 2020, as the representative of non-cloudy image compared to Landsat 8, acquired on 9 August 2020, as the cloudy image. Stumpf algorithm was applied, including a statistical approach of linear regression analysis with in-situ data measurement from Single Beam Echo-Sounder (SBES) to derive the absolute bathymetric map with several classes of depth ranging from 0 – 2 m up to 10 m. To assess the accuracy, RMSE and confusion matrix was used. The result shows that Landsat 7 ETM+ yields the highest R2 with 0,52, while the lowest total RMSE (8,167 m) and highest overall accuracy of about 69% from the confusion matrix was achieved by the cloudy image of Landsat 8. Nevertheless, the highest absolute depth value yield by Landsat 8 non-cloudy image with 16,1 m. This research confirms that the highest R2 value does not always produce the best model, but it is still promised to be used. Furthermore, the quality of the imagery based on its percentage of cloud coverage is affecting the resulted model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.