The range of DNA sequences used to study the interrelationships of the major arthropod groups (chelicerates, myriapods, hexapods and crustaceans) is limited. Here we investigate the value of two genes not previously employed in arthropod phylogenetics. Histone H3 data were collected for 31 species and small nuclear ribonucleic acid U2 data for 29 species. The sequences provided a total of 460 sites and 192 parsimony-informative characters. H3 analyses showed substantial codon usage bias, but had a low consistency index (0.26). Consistency indices were higher for the U2 data (0.49), suggesting that the class of snRNAs may provide several phylogenetically useful genes. The present data are not by themselves sufficient to clarify major arthropod group relationships. Partitioned data for H3 and U2 are incongruent according to Incongruence Length Difference tests. Although the most parsimonious trees, based on combined analyses of all taxa, differ substantially from morphology-based trees, anomalous groupings are weakly supported with only one exception. The trees uphold monophyly of Onychophora, Branchiopoda, and Malacostraca (rather than the rival Phyllopoda). Cladistic analyses constraining the monophyly of morphologically defined classes do not significantly distinguish between the main rival hypotheses of major clade relationships. Combined (‘spliced’) analysis of both genes improves topological congruence with morphological groupings relative to that of either partition. Character congruence between H3, U2, and morphology is increased by downweighting (but not excluding) transitions and third codons. Analyses of four-taxon statements using PHYLTEST found significant support for the basal position of the Crustacea among the euarthropods. This support may be due to the similarity of chelicerates, myriapods and hexapods in percentage GC content.
Summary1. An important problem encountered by ecologists in species distribution modelling (SDM) and in multivariate analysis is that of understanding why environmental responses differ across species, and how differences are mediated by functional traits. 2. We describe a simple, generic approach to this problem -the core idea being to fit a predictive model for species abundance (or presence/absence) as a function of environmental variables, species traits and their interaction. 3. We show that this method can be understood as a model-based approach to the fourth-corner problem -the problem of studying the environment-trait association using matrices of abundance or presence/absence data across species, environmental data across sites and trait data across species. The matrix of environment-trait interaction coefficients is the fourth corner. 4. We illustrate that compared with existing approaches to the fourth-corner problem, the proposed model-based approach has advantages in interpretability and its capacity to perform model selection and make predictions. 5. To illustrate the method we used a generalized linear model with a LASSO penalty, fitted to data sets from four different studies requiring different models, illustrating the flexibility of the proposed approach. 6. Predictive performance of the model is compared with that of fitting SDMs separately to each species, and in each case, it is shown that the trait model, despite being much simpler, had comparable predictive performance, even significantly outperforming separate SDMs in some cases.
The classification of the hyperdiverse true bug family Miridae is far from settled, and is particularly contentious for the cosmopolitan subfamily Bryocorinae. The morphological diversity within the subfamily is pronounced, and a lack of explicit character formulation hampers stability in the classification. Molecular partitions are few and only a handful of taxa have been sequenced. In this study the phylogeny of the subfamily Bryocorinae has been analysed based on morphological data alone, with an emphasis on evaluating the tribe Dicyphina sensu Schuh, 1976, within which distinct groups of taxa exist. A broad sample of taxa was examined from each of the bryocorine tribes. A broad range of outgroup taxa from most of the other mirid subfamilies was also examined to test for bryocorine monophyly, ingroup relationships and to determine character polarity. In total a matrix comprising 44 ingroup, 15 outgroup taxa and 111 morphological characters was constructed. The phylogenetic analysis resulted in a monophyletic subfamily Bryocorinae sensu Schuh (1976, 1995), except for the genus Palaucoris, which is nested within Cylapinae. The tribe Dicyphini sensu Schuh (1976, 1995) has been rejected. The subtribe Odoniellina is synonymized with the subtribe Monaloniina and the subtribes Dicyphina, Monaloniina and Eccritotarsina are now elevated to tribal level, with the Dicyphini now restricted in composition and definition. The genus Felisacus is highly autapomorphic and a new tribe -the Felisacini -is erected for the included taxa. This phylogeny of the tribes of the Bryocorinae comprises the following sister-group relationships: Dicyphini ((Bryocorini + Eccritotarsini)(Felisicini + Monaloniini)).
We examined the responses of a beetle assemblage to habitat complexity differences within a single habitat type, Sydney sandstone ridgetop woodland, using pitfall and flight-intercept trapping. Six habitat characters (tree canopy cover, shrub canopy cover, ground herb cover, soil moisture, amount of leaf litter, and amount of logs, rocks and debris) were scored between 0 and 3 using ordinal scales to reflect habitat complexity at survey sites. Pitfall trapped beetles were more species rich and of different composition in high complexity sites, compared with low complexity sites. Species from the Staphylinidae (Aleocharinae sp. 1 and sp. 2), Carabidae ( Pamborus alternans Latreille), Corticariidae ( Cartodere Thomson sp. 1) and Anobiidae ( Mysticephala Ford sp. 1) were most clearly responsible for the compositional differences, preferring high complexity habitat. Affinities between general functional groupings of pitfall-trapped beetles and habitat variables were not clear at a low taxonomic resolution (family level). The composition and species richness of flight-intercept-trapped beetles were similar in high and low complexity sites. Our study demonstrates that discrete responses of the various functional groups of beetles are strongly associated with their feeding habits, indicated by differing habitat components from within overall composite habitat complexity measures. Although habitat preferences by beetle species may often reflect their foraging habits, clarification of the causal mechanisms underpinning the relationships between habitat complexity and beetles are critical for the development of general principles linking habitat, functional roles and diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.