We investigated responses of ant communities to habitat complexity, with the aim of assessing complexity as a useful surrogate for ant species diversity. We used pitfall traps to sample ants at twenty‐eight sites, fourteen each of low and high habitat complexity, spread over ca 12 km in Sydney sandstone ridge‐top woodland in Australia. Ant species richness was higher in low complexity areas, and negatively associated with ground herb cover, tree canopy cover, soil moisture and leaf litter. Ant community composition was affected by habitat complexity, with morphospecies from the genera Monomorium, Rhytidoponera and Meranoplus being the most significant contributors to compositional differences. Functional group responses to anthropogenic disturbance may be facilitated by local changes in habitat complexity. Habitat complexity, measured as a function of differences in multiple strata in forests, may be of great worth as a surrogate for the diversity of a range of arthropod groups including ants.
We examined the responses of a beetle assemblage to habitat complexity differences within a single habitat type, Sydney sandstone ridgetop woodland, using pitfall and flight-intercept trapping. Six habitat characters (tree canopy cover, shrub canopy cover, ground herb cover, soil moisture, amount of leaf litter, and amount of logs, rocks and debris) were scored between 0 and 3 using ordinal scales to reflect habitat complexity at survey sites. Pitfall trapped beetles were more species rich and of different composition in high complexity sites, compared with low complexity sites. Species from the Staphylinidae (Aleocharinae sp. 1 and sp. 2), Carabidae ( Pamborus alternans Latreille), Corticariidae ( Cartodere Thomson sp. 1) and Anobiidae ( Mysticephala Ford sp. 1) were most clearly responsible for the compositional differences, preferring high complexity habitat. Affinities between general functional groupings of pitfall-trapped beetles and habitat variables were not clear at a low taxonomic resolution (family level). The composition and species richness of flight-intercept-trapped beetles were similar in high and low complexity sites. Our study demonstrates that discrete responses of the various functional groups of beetles are strongly associated with their feeding habits, indicated by differing habitat components from within overall composite habitat complexity measures. Although habitat preferences by beetle species may often reflect their foraging habits, clarification of the causal mechanisms underpinning the relationships between habitat complexity and beetles are critical for the development of general principles linking habitat, functional roles and diversity.
Habitat structure and complexity affect the diversity and composition of fauna in a number of systems. We investigated patterns in wasp species richness, abundance and composition and also their associations with habitat complexity in Sydney sandstone forests, Australia. Pitfall and flight-intercept traps collected dissimilar wasp assemblages. High complexity habitats supported greater abundance and species richness and a dissimilar composition of pitfall-trapped wasps to low complexity habitats. Soil moisture, tree canopy cover, ground herb cover and shrub canopy cover all had significant positive associations with the species richness of pitfall-trapped wasps. Although the five most abundant families of wasps we trapped are endoparasitoids of other arthropods, they showed a variety of preferences for habitat variables. The mechanisms driving associations between habitat complexity and patterns in wasp communities may also provide a basis for understanding factors influencing the regulation of arthropod assemblages by wasps in agricultural and natural landscapes.
2005. Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: can we predict ant community patterns? Á/ Ecography 28: 495 Á/504.The structure and composition of arthropod assemblages are strongly associated with habitat complexity. Accurate, time efficient estimates of habitat complexity may provide insights for biodiversity management in natural systems. We obtained high-resolution (0.7 m pixel) multi-spectral aerial imagery of National Parks 20 km north and 20 km south of Sydney, Australia. We explored both the Normalised Difference Vegetation Index (NDVI) and the standard deviation of reflectance in the near-infrared spectrum (stdevR NIR ) as indicators of low and high habitat complexity in sandstone forests north of Sydney. We then tested described predictions of ant community patterns (based on a previous study) using sites selected from high-resolution multi-spectral imagery in sandstone forests south of Sydney. Ground-scored habitat complexity was positively correlated with NDVIs and, to a lesser extent, stdevR NIR values in sandstone forests north of Sydney. As predicted, ant species richness was negatively correlated with NDVIs in forests to the south of Sydney. Also, ant species composition was different in areas with contrasting NDVIs. The ant species driving composition differences responded to habitat complexity in a similar way in forests to the north, and south, of Sydney. The strong association we detected between NDVIs and habitat complexity, most likely reflects the relatively exposed nature of the vegetative layers in the forests we sampled. Remote sensing, integrated with quantitative research testing predictive faunal responses to vegetation structure and biomass at landscape scales, may provide efficient means of estimating biodiversity for management in particular habitats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.