In this contribution, we investigate hybrid single vision spectacle lenses (SVSLs) consisting of holographic optical elements (HOEs) embedded into a refractive lens. We evaluate the performance of two examples of hybrid SVSLs in terms of their distributions of spherical error (SPH error), astigmatic error (AST error) and transverse chromatic error (CE) over the lens surface, simulating the optical performance for the patient's rotating eye. We find that, particularly for high prescription values, hybrid SVSLs outperform their purely refractive counterparts in terms of CE with the additional benefit of reducing the lens thickness. As such, we show that hybrid refractive, holographic designs can be a viable alternative to purely refractive SVSLs for high prescription SVSLs.
Purpose: Presbyopia, with its gradual loss of accommodation amplitude, is part of the natural human aging process and commonly corrected using progressive addition lenses (PALs). However, the pre-clinical simulation of visual performance is difficult. Therefore, the purpose of this study is to present a framework to predict visual acuity (VA) based on a convolutional neural network (CNN) and to further to compare PAL designs. Method: A simple two hidden layer CNN was trained to classify the gap orientations of Landolt Cs by combining the feature extraction abilities of a CNN with psychophysical staircase methods. The simulation was validated regarding its predictability of clinical VA from induced spherical defocus (between ±1.5 D,step size: 0.5 D) from 39 subjectively measured eyes. Afterwards, a simulation for a presbyopic eye corrected by either a generic hard or a soft PAL design (addition power: 2.5 D) was performed including lower and higher order aberrations. Result: The validation revealed consistent offset of +0.20 logMAR ±0.035 logMAR from simulated VA. Bland-Altman analysis from offset-corrected results showed limits of agreement (±1,96 SD) of -0.08 logMAR and +0.07 logMAR, which is comparable to clinical repeatability of VA assessment. The application of the simulation for PALs confirmed a bigger far zone for generic hard design, but did not reveal zone width differences for the intermediate or near zone. Furthermore, a horizontal area of better VA at the mid of the PAL was found, which confirms the importance for realistic performance simulations using object-based aberration and physiological performance measures as VA. Conclusion: The proposed holistic simulation tool was shown to act as an accurate model for subjective visual performance. Further, the simulation's application for PALs indicated its potential as an effective method to compare visual performance of different optical designs. Moreover, the simulation provides the basis to incorporate neural aspects of visual perception and thus simulate the VA including neural processing in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.