Journal of BIOPHOTONICSA setup is proposed that provides perfectly co-registered photoacoustic (PA) and ultrasound (US) section images. Photoacoustic and ultrasound backscatter signals are generated by laser pulses coming from the same laser system, the latter by absorption of some of the laser energy on an optically absorbing target near the imaged object. By measuring both signals with the same optical detector, which is focused into the selected section by use of a cylindrical acoustic mirror, the information for both images is acquired simultaneously. Co-registered PA and US images are obtained after applying the inverse Radon transform to the data, which are gathered while rotating the object relative to the detector. Phantom experiments demonstrate a resolution of 1.1 mm between the sections of both imaging modalities and a inplane resolution of about 60 mm and 120 mm for the US and PA modes, respectively. The complementary contrast mechanisms of the two modalities are shown by images of a zebrafish.Result of the dual-modality section imaging experiment on a zebrafish. Scale bar: 1 mm. The first row shows the photoacoustic (PA) and the laser ultrasound (LUS) section image. The second row shows the fusion image (FI) and the histological section.
A tomographic setup that provides the co-registration of photoacoustic (PA) and ultrasound (US) images is presented. For pulseecho US-tomography laser-induced broadband plane ultrasonic waves are produced by illuminating an optically absorbing target with a short near-infrared laser pulse. Part of the same pulse is frequency doubled and used for the generation of PA waves within the object of interest. The laser-generated plane waves are scattered at the imaging object and measured with the same interferometric detector that also acquires the photoacoustic signals. After collection and separation of the data image reconstruction is done using back-projection resulting in threedimensional, co-registered PA and US images. The setup is characterized and the resolution in PA and US mode is estimated to be about 85 µm and 40 µm, respectively. Besides measurements on phantoms the performance is also tested on a biological sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.