Mitochondria do not contain catalase and are therefore largely dependent on reduced glutathione (GSH) and glutathione peroxidases for its antioxidant protection. When GSH levels are greatly decreased, hydrogen peroxide accumulates leading to extensive mitochondrial damage. Melatonin has antioxidant properties and prevents toxic effects of reactive oxygen species by maintaining cellular GSH homeostasis. Thus, we examined the influence of melatonin and other classical antioxidants such as vitamins C and E on GSH content and the activity of the GSH-related enzymes (glutathione peroxidase and reductase) in isolated rat liver and brain mitochondria treated with t-butyl hydroperoxide (t-BHP). In control mitochondria melatonin (100 nM) significantly increases GSH content and glutathione peroxidase and reductase activities. After incubation with 100 µM t-BHP, the mitochondrial hydroperoxides level increased, 90% of mitochondrial GSH was oxidized to GSSH, and the activities of GSH-related enzymes were almost totally inhibited. Melatonin (100 nM) counteracted the changes in GSH, GSH-related enzymes and hydroperoxides induced by t-BHP in cultured mitochondria. In the presence of 100 nM melatonin, the activity of the respiratory chain complexes I and IV, measured in submitochondrial particles prepared from rat liver and brain mitochondria, increased significantly. Vitamin C was virtually without effect, and only 1 mM vitamin E increased GSH and reduced hydroperoxide mitochondrial contents. Our results suggest that melatonin, but not vitamins C and E, prevents the toxic effects of hydroperoxides on mitochondria by regenerating their GSH content.Key words: mitochondrial oxidative damage • antioxidant • free radicals • hydroperoxides • electron transport chain itochondria is the major intracellular source of superoxide anion (O 2•-) and hydrogen peroxide (H 2 O 2 ) because of the fixation of molecular oxygen in the respiratory chain (1, 2). Small inefficiencies in the mitochondrial electron transport M chain produce background levels of radical oxygen species (ROS) that can lead to severe mitochondrial dysfunction and cell death (2-5).Glutathione (GSH) and its related enzymes glutathione peroxidase (GPx) and reductase (GRx) are the main mitochondrial antioxidant system (6-8). Mitochondria do not contain catalase and are therefore largely, if not entirely, dependent on GSH and its recycling enzymes (6). Mitochondria do not synthesize GSH but obtain it by from cytosol through a multicomponent transport system, which explains the remarkable ability of mitochondria to take up and retain GSH (6,9). Studies in liver and kidney preparations have concluded that in chemical-induced oxidative injury involving GSH depletion, it was the depletion of the mitochondrial GSH pool rather that of the cytosolic GSH pool critical for development of irreversible cellular damage (10, 11). The GSH-GSSG status is decisive to maintenance of numerous aspects of mitochondrial function, including membrane structure and integrity, intramitochondrial redox ...
We evaluated the role of melatonin in endotoxemia caused by lipopolysaccharide (LPS) in unanesthetized rats. The expression of inducible isoform of nitric oxide synthase (iNOS) and the increase in the oxidative stress seem to be responsible for the failure of lungs, liver, and kidneys in endotoxemia. Bacterial LPS (10 mg/kg b. w) was i.v. injected 6 h before rats were killed and melatonin (10-60 mg/kg b.w.) was i.p. injected before and/or after LPS. Endotoxemia was associated with a significant rise in the serum levels of aspartate and alanine aminotransferases, gamma-glutamyl-transferase, alkaline phosphatase, creatinine, urea, and uric acid, and hence liver and renal dysfunction. LPS also increased serum levels of cholesterol and triglycerides and reduced glucose levels. Melatonin administration counteracted these organ and metabolic alterations at doses ranging between 20 and 60 mg/kg b. w. Melatonin significantly decreased lung lipid peroxidation and counteracted the LPS-induced NO levels in lungs and liver. Our results also show an inhibition of iNOS activity in rat lungs by melatonin in a dose-dependent manner. Expression of iNOS mRNA in lungs and liver was significantly decreased by melatonin (60 mg/kg b. w., 58-65%). We conclude that melatonin inhibits NO production mainly by inhibition of iNOS expression. The inhibition of NO levels may account for the protection of the indoleamine against LPS-induced endotoxemia in rats.
The role of melatonin in improving mitochondrial respiratory chain activity and increasing ATP production in different experimental conditions has been widely reported. To date, however, the mechanism(s) involved are largely unknown. Using high-resolution respirometry, fluorometry and spectrophotometry we studied the effects of melatonin on normal mitochondrial functions. Mitochondria were recovered from mouse liver cells and incubated in vitro with melatonin at concentrations ranging from 1 nm to 1 mm. Melatonin decreased oxygen consumption concomitantly with its concentration, inhibited any increase in oxygen flux in the presence of an excess of ADP, reduced the membrane potential, and consequently inhibited the production of superoxide anion and hydrogen peroxide. At the same time it maintained the efficiency of oxidative phosphorylation and ATP synthesis while increasing the activity of the respiratory complexes (mainly complexes I, III, and IV). The effects of melatonin appeared to be due to its presence within the mitochondria, since kinetic experiments clearly showed its incorporation into these organelles. Our results support the hypothesis that melatonin, together with hormones such as triiodothyronine, participates in the physiological regulation of mitochondrial homeostasis.
Although two main hypotheses of mitochondrial origin have been proposed, i.e., the autogenous and the endosymbiotic, only the second is being seriously considered currently. The 'hydrogen hypothesis' invokes metabolic symbiosis as the driving force for a symbiotic association between an anaerobic, strictly hydrogen-dependent (the host) and an eubacterium (the symbiont) that was able to respire, but which generated molecular hydrogen as an end product of anaerobic metabolism. The resulting proto-eukaryotic cell would have acquired the essentials of eukaryotic energy metabolism, evolving not only aerobic respiration, but also the physiological cost of the oxygen consumption, i.e., generation of reactive oxygen species (ROS) and the associated oxidative damage. This is not the only price to pay for respiring oxygen: mitochondria possess nitric oxide (NO·) for regulatory purposes but, in some instances it may react with superoxide anion radical to produce the toxic reactive nitrogen species (RNS), i.e. peroxynitrite anion, and the subsequent nitrosative damage. New mitochondria contain their own genome with a modified genetic code that is highly conserved among mammals. The transcription of certain mitochondrial genes may depend on the redox potential of the mitochondrial membrane. Mitochondria are related to the life and death of cells. They are involved in energy production and conservation, having an uncoupling mechanism to produce heat instead of ATP, but they are also involved in programmed cell death. Increasing evidence suggest the participation of mitochondria in neurodegenerative and neuromuscular diseases involving alterations in both nuclear (nDNA) and mitochondrial (mtDNA) DNA. Melatonin is a known powerful antioxidant and anti-inflammatory and increasing experimental and clinical evidence shows its beneficial effects against oxidative/nitrosative stress status, including that involving mitochondrial dysfunction. This review summarizes the data and mechanisms of action of melatonin in relation to mitochondrial pathologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.