The shadow effect caused by nearby objects or the lack of cleaning significantly affects the performance of photovoltaics (PV) installations. This article analyses the bypass diode electrical behaviour and the thermal response of a PV crystalline module under shading or soiling conditions. PV cells of different substrings were covered progressively to simulate the effect of shading or soiling while a programmable electronic DC load was connected to a PV module to set an operating voltage. Three different tests were made to different PV crystalline technology. The paper characterizes in real conditions the I–V curve, bypass diode current, and front and back side PV cell temperature with contact sensor and infrared (IR) thermography, respectively. The results showed that the operation voltage established in the PV module defines the electrical bypass diode current and thermal response under normal operating conditions, shading or soiling. To show the bypass diode behaviour in such conditions, I–V curves were obtained, pointing out the value of the current that flows through bypass diodes in the whole voltage range.
Faults in photovoltaic modules in operation can lead to power losses. By determining the module surface temperature, hot spots that can potentially cause this power loss can be detected. Temperature measurement by radiation allows a complete, reliable, and fast qualitative determination of hot spots on PV modules in outdoor operation. However, to obtain quantitative values, it is necessary to consider multiple factors: emissivity, reflected radiation, wind speed, intensity, shading, etc. Temperature quantitative measurement evaluation by contact is more studied, although by this technique it is impossible to examine the temperature of the entire module to detect hot spots because it is a point measurement and due to shading caused by the measurement probe on the surface. In this work, a method of temperature measurement by radiation is described, evaluating the uncertainty components, and a comparison is made with temperature measurement by contact on the module rear side points where module heating has been detected, also evaluating the uncertainty components. This comparison of both methods and uncertainty determination allows establishing a methodology in quantitative temperature measurement by radiation in photovoltaic modules in outdoor operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.