Falls are a multifactorial cause of injuries for older people. Subjects with osteoporosis are particularly vulnerable to falls. We study the performance of different computational methods to identify people with osteoporosis who experience a fall by analysing balance parameters. Balance parameters, from eyes open and closed posturographic studies, and prospective registration of falls were obtained from a sample of 126 community-dwelling older women with osteoporosis (age 74.3 ± 6.3) using World Health Organization Questionnaire for the study of falls during a follow-up of 2.5 years. We analyzed model performance to determine falls of every developed model and to validate the relevance of the selected parameter sets. The principal findings of this research were (1) models built using oversampling methods with either IBk (KNN) or Random Forest classifier can be considered good options for a predictive clinical test and (2) feature selection for minority class (FSMC) method selected previously unnoticed balance parameters, which implies that intelligent computing methods can extract useful information with attributes which otherwise are disregarded by experts. Finally, the results obtained suggest that Random Forest classifier using the oversampling method to balance the data independent of the set of variables used got the best overall performance in measures of sensitivity (>0.71), specificity (>0.18), positive predictive value (PPV >0.74), and negative predictive value (NPV >0.66) independent of the set of variables used. Although the IBk classifier was built with oversampling data considering information from both eyes opened and closed, using all variables got the best performance (sensitivity >0.81, specificity >0.19, PPV = 0.97, and NPV = 0.66).
La Industria 4.0 está cambiando la producción global, y esto demanda que los futuros profesionistas conozcan y dominen las tecnologías habilitadoras de ésta. Es por ello que las universidades necesitan generar los mecanismos de enseñanza-aprendizaje para que los estudiantes adquieran habilidades que demandarán los nuevos puestos de trabajo y que les permitan ser competitivos. Los sistemas ciber-físicos son los grandes protagonistas de la Industria 4.0, éstos conjuntan muchas tecnologías, y cuentan con una infraestructura física que funciona al combinarse con una parte digital. En este trabajo se muestra el desarrollo de un sistema ciber-físico como medio de enseñanza-aprendizaje para propiciar que los estudiantes generen las capacidades requeridas por la Industria 4.0. La maqueta I4.0, mejora el proceso de ubicación e identificación de lugares en una institución, pero, por otra parte, permite al estudiante experimentar con tecnologías como computación en la nube, internet de las cosas y recorridos virtuales, de una manera práctica, modificando o agregando nueva funcionalidad a la maqueta. Finalmente, se describen un conjunto de prácticas, como una propuesta a utilizarse en el proceso de enseñanza por parte de los docentes, las cuales pueden permitir a los estudiantes asimilar los conceptos y tecnologías de Industria 4.0, a través del desarrollo de las mismas.
The tariff fraction is the universal form of identifying a product. It is very useful because it helps to know the tariff that the product must pay when entering or leaving the country, in this case Mexico. Coffee is a complicated product to identify correctly due to its variants, which at first glance are not distinguishable, which can cause confusion and the tariff to be charged incorrectly. Therefore, the main objective of this project was to develop a system based on Deep Learning models, which allow to identify the tariff code of coffee to import or export this product through the analysis of digital images in real time, generating automatically a general report with this information for the customs broker. The developed system allows speeding up the process of assigning the tariff fraction, and also allows the correct assignment of the tariff fraction, avoiding confusion with other products and the wrong collection of the tariff. It is important to mention that the system, although for the moment it is focused on the country of Mexico, can be used in all customs offices since the tariff fraction is universal. The evaluation of the models was carried out with cross-validation, obtaining an effectiveness of more than 80%, and the tariff fraction assignment model had an effectiveness of 90%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.